Entrar Página Discusión Historial Go to the site toolbox

Potencial eléctrico debido a una polarización

De Laplace

Revisión a fecha de 20:28 6 feb 2010; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

El potencial eléctrico debido a una polarización es la suma de los potenciales debidos a cada dipolo

\phi(\mathbf{r}) =\frac{1}{4\pi\varepsilon_0}\int_\tau \mathbf{P}(\mathbf{r}'){\cdot}\frac{(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'

Esta integral suele ser difícil de calcular por métodos analíticos.

Una descripción alternativa es mediante las densidades de carga de polarización o de carga ligada, definidas como

\rho_p = -\nabla{\cdot}\mathbf{P}        \sigma_p = -\mathbf{n}{\cdot}[\mathbf{P}]\,

La última fórmula, con el salto en la polarización, se aplica a una interfaz entre dos dieléctricos. Si uno de ellos es el vacío (en el cual \mathbf{P}=\mathbf{0}), esta expresión se reduce a \sigma_p = \mathbf{P}{\cdot}\mathbf{n}. En términos de ρp y σp el potencial es

\phi = \frac{1}{4\pi\varepsilon_0}\int_\tau\frac{\rho_p}{|\mathbf{r}-\mathbf{r}'|}\,\mathrm{d}\tau'+
\frac{1}{4\pi\varepsilon_0}\oint_{\partial\tau}\frac{\sigma_p}{|\mathbf{r}-\mathbf{r}'|}\,\mathrm{d}S'

Empleando las cargas de polarización, las ecuaciones de la electrostática en presencia de dieléctricos se escriben como

\nabla{\cdot}\mathbf{E} = \frac{\rho_l+\rho_p}{\varepsilon_0}        \nabla\times \mathbf{E} =\mathbf{0}

con las condiciones de salto

\mathbf{n}{\cdot}[\mathbf{E}] = \frac{\sigma_l+\sigma_p}{\varepsilon_0}        \mathbf{n}\times
[\mathbf{E}]=\mathbf{0}

siendo ρl y σl las densidades de carga libre, definidas como aquellas que no son de polarización.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace