Entrar Página Discusión Historial Go to the site toolbox

Campo debido a una esfera cargada uniformemente

De Laplace

1 Enunciado

Una esfera de radio R almacena una carga Q distribuida uniformemente en su volumen.

  1. Calcule el campo eléctrico producido por la esfera en todos los puntos del espacio.
  2. Halle la fuerza que experimenta un dipolo \mathbf{p} situado en el interior de esta nube de carga.

2 Campo eléctrico

El campo eléctrico se determina de forma simple mediante la aplicación de la ley de Gauss.

Dada la simetría del sistema, podemos suponer que el potencial eléctrico debido a esta esfera depende exclusivamente de la distancia al centro de ella. Esto implica que el campo eléctrico debido a la esfera es central

\phi=\phi(r)\,   \Rightarrow   \mathbf{E}=-\frac{\partial\phi}{\partial r}\mathbf{u}_r-\frac{1}{r}\overbrace{\frac{\partial\phi}{\partial\theta}}^{=0}\mathbf{u}_\theta-\frac{1}{r\,\mathrm{sen}\,\theta}\overbrace{\frac{\partial\phi}{\partial\varphi}}^{=0}\mathbf{u}_\varphi=E(r)\mathbf{u}_r

Si calculamos el flujo del campo eléctrico a través de una superficie esférica de radio r concéntrica con la esfera de carga obtenemos

\Phi_\mathrm{e}\oint \mathbf{E}\cdot\mathrm{d}\mathbf{S}=\oint \left(E(r)\mathbf{u}_r\right)\cdot\left(\mathrm{d}S\,\mathbf{u}_r\right)=\oint E(r)\,\mathrm{d}S

Al tratarse de dos vectores paralelos, el integrando se reduce al producto de las dos componentes radiales. Por otro lado, por ser la superficie de integración una esfera (r = cte) y ser el campo central la componente radial del campo es la misma sobre todos los puntos de la superficie y puede extraerse de la integral

\Phi_e = \oint E(r)\,\mathrm{d}S=  E(r)\oint \mathrm{d}S =4\pi r^2 E

Nótese que lo que es constante es la componente radial del campo y no el propio campo, cuya dirección varía de un punto a otro de la superficie esférica.

Este resultado es general para cualquier sistema con simetría esférica, sea una carga puntual, una superficie cargada o una distribución radial no uniforme.

De acuerdo con la ley de Gauss, este flujo es igual a la carga encerrada, dividida por la permitividad del vacío

\oint \mathrm{E}\cdot\mathrm{d}\mathbf{S}=\frac{Q_\mathrm{int}(r)}{\varepsilon_0}

Dependiendo de si el radio de la superficie de integración es mayor o menor que el de la esfera de carga, tenemos dos casos:

En el exterior de la nube de carga (r > R)
En este caso, la superficie de integración contiene a toda la carga del sistema
Q_\mathrm{int}=Q\,   \Rightarrow   4\pi r^2 E = \frac{Q}{\varepsilon_0}    \Rightarrow   \mathbf{E}=\frac{Q}{4\pi\varepsilon_0r^2}\mathbf{u}_r\quad(r>R)

3 Fuerza sobre un dipolo

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace