Entrar Página Discusión Historial Go to the site toolbox

Campo producido por una espira poligonal

De Laplace

Contenido

1 Enunciado

Por las espira de formas irregulares de las figuras circula una corriente I. Halle el valor del campo en el punto P en cada caso.

Imagen:romboideB.png        Imagen:espiracubo.png

Para cada una de las espiras, hállese su momento magnético y la expresión del campo magnético y del potencial vector en puntos alejados de la espira.

2 Cuadrilátero

2.1 Campo en P

El campo es la suma de las contribuciones de cada uno de los lados del cuadrilátero. El campo de un segmento puede calcularse por integración directa, resultando la expresión

\mathbf{B}=\frac{\mu_0 I}{4\pi\rho}(\,\mathrm{sen}\,\alpha_2-\,\mathrm{sen}\,\alpha_1)\mathbf{n}

donde α1 y α2 son los ángulos con que se ven los extremos del segmento desde P, ρ es la distancia de P a la recta soporte del segmento y \mathbf{n} la normal al plano definido por el segmento y P, orientado según la regla de la mano derecha.

El punto P se encuentra en la intersección de la prolongación de dos de los lados. Por

2.2 Momento magnético

3 Espira alabeada

3.1 Campo en P

3.2 Momento magnético

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace