Entrar Página Discusión Historial Go to the site toolbox

Caso práctico de ciclo Diesel (GIE)

De Laplace

Contenido

1 Enunciado

Suponga un motor diésel turbo con una cilindrada de 1700 cm³. En este motor el aire a la entrada está a una presión de 150 kPa y una temperatura de 17 °C. Si para este motor la razón de compresión es 18 y la de combustión vale 2, determine los volúmenes, presiones y temperaturas de cada vértice del ciclo, así como su rendimiento y el calor y el trabajo intercambiados por el motor.

2 Presiones, volúmenes y temperaturas

2.1 Estado A (antes de la compresión)

El volumen inicial y tras la compresión los obtenemos de que conocemos la cilindrada y la relación de compresión

V_A-V_B=1700\,\mathrm{cm}^3\qquad\qquad \frac{V_A}{V_B}=r=18

lo que nos da

V_A=1800\,\mathrm{cm}^3\qquad\qquad V_B = 100\,\mathrm{cm}^3

La presión y la temperatura antes de la compresión son datos del problema

p_A=150\,\mathrm{kPa}\qquad\qquad T_A=290\,\mathrm{K}

Construimos una tabla con estos valores, que iremos ampliando más tarde

Estado p (MPa) T (K) V (cm³)
A 0.150 290 1800

2.2 Estado B (tras la compresión)

Si, como aproximación, suponemos que el proceso es adiabático y cuasiestático, podemos emplear la fórmula de Poisson

p_AV_A^\gamma = p_B V_B^\gamma\qquad\Rightarrow\qquad p_B = p_A r^\gamma

lo que da

p_B = 150\times 18^{1.4}\,\mathrm{kPa}=8580\,\mathrm{kPa}=8.58\,\mathrm{MPa}

La temperatura la podemos calcular empleando la ley de Poisson

T_AV_A^{\gamma-1}=T_BV_B^{\gamma-1}\qquad\Rightarrow T_B = T_A r^{\gamma-1}

o la de los gases ideales

\frac{p_AV_A}{T_A}=\frac{p_BV_B}{T_B}\qquad\Rightarrow\qquad T_B=T_A\,\frac{p_B}{p_A}\,\frac{V_B}{V_A}

y resulta

T_B = 922\,\mathrm{K}

Añadimos la fila a la tabla

Estado p (MPa) T (K) V (cm³)
A 0.15 290 1800
B 8.58 922 100

2.3 Estado C (tras la combustión)

En el ciclo Diesel ideal la combustión se realiza a presión constante, por lo que

p_C=p_B = 8.58\,\mathrm{MPa}

Nos dan como dato la relación de combustión, lo que nos proporciona el volumen

\frac{v_C}{V_B}=r_c = 2\qquad\Rightarrow\qquad V_C = 200\,\mathrm{cm}^3

y la temperatura, por la ley de Charles

(p_B=p_C)\qquad\qquad \frac{V_C}{T_C}=\frac{V_B}{T_B}\qquad\Rightarrow\qquad T_C=T_B r_c = 1843\,\mathrm{K}

Añadimos la línea

Estado p (MPa) T (K) V (cm³)
A 0.15 290 1800
B 8.58 922 100
C 8.58 1843 200

2.4 Estado D (tras la expansión)

En el ciclo Diesel ideal se supone que el volumen tras la expansión es el mismo que antes de la compresión

V_D=V_A=1800\,\mathrm{cm}^3

La presión la calculamos de nuevo por la ley de Poisson, ya que suponemos que la expansión es adiabática

p_D = p_C\left(\frac{V_C}{V_D}\right)^\gamma

lo que da

p_D=0.396\,\mathrm{MPa}

y la temperatura

T_D = T_C\left(\frac{V_C}{V_D}\right)^{\gamma-1}=765\,\mathrm{K}

lo que nos permite completar la tabla

Estado p (MPa) T (K) V (cm³)
A 0.15 290 1800
B 8.58 922 100
C 8.58 1843 200
A 0.40 765 1800

3 Calor y trabajo

4 Rendimiento

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace