Entrar Página Discusión Historial Go to the site toolbox

Divergencia de un campo vectorial

De Laplace

Contenido

1 Introducción

2 Definición

Se define la divergencia de un campo vectorial \mathbf{A} en un punto \mathbf{r}_0 como el límite

\mathrm{div}\,\mathbf{A}=\nabla\cdot\mathbf{A}=\lim_{\tau\to 0}\frac{1}{\tau} \oint_{\partial\tau}\mathbf{A}\cdot\mathrm{d}\mathbf{S}

donde el límite se toma sobre volúmenes τ cada vez más pequeños que tienden al punto \mathbf{r}_0

3 Fuentes escalares de un campo vectorial

4 Campo solenoidal

5 Expresión de la divergencia

6 Ejemplos

7 Teorema de Gauss

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace