Entrar Página Discusión Historial Go to the site toolbox

Tiro parabólico en pendiente

De Laplace

Contenido

1 Enunciado

Un mortero lanza un proyectil esférico de acero de 5 cm de radio desde un punto sobre el suelo horizontal al pie de una pendiente cuya superficie forma un ángulo \beta=30^\circ con la horizontal. El mortero dispara el proyectil con una velocidad de 21 m/s. Desprecie el rozamiento con el aire y el posible efecto de rotación de la esfera.

Archivo:mortero-rampa.png
  1. Si el proyectil es lanzado con un ángulo α con la horizontal, ¿a qué distancia s del mortero, medida sobre la pendiente, impacta con el suelo?
  2. Halle el valor de α que hace máxima esta distancia.
  3. Suponga que el proyectil se lanza con un ángulo de π/3 con la horizontal. Para este caso, halle:
    1. La rapidez que tiene en el momento del impacto.
    2. La aceleración tangencial y normal (escalares) en el momento de impacto.
    3. La variación en la energía cinética y en la potencial respecto al instante inicial.

Datos: Aceleración de la gravedad g = 9.8\,\mathrm{m}/\mathrm{s}^2. Densidad de masa del acero: \rho =
7850\,\mathrm{kg}/\mathrm{m}^3.

2 Alcance general

En el movimiento del proyectil, se cumplen las ecuaciones horarias

\left\{\begin{array}{rcl} x & = & v_0\cos(\alpha)t \\ z & = & v_0\,\mathrm{sen}(\alpha)t-\displaystyle\frac{1}{2}gt^2\end{array}\right.

Por otro lado, en el momento de impacto, el proyectil se encuentra sobre la pendiente, por lo que

\left\{\begin{array}{rcl} x & = & s\cos(\beta) \\ z & = & s\,\mathrm{sen}(\beta)\end{array}\right.

Para hallar el punto de impacto, primero despejamos el tiempo de impacto

t=\frac{x}{v_0\cos(\alpha)}=\frac{s\cos(\beta)}{v_0\cos(\alpha)}

y a continuación sustituimos en la coordenada vertical

s\,\mathrm{sen}(\beta)= z = \mathrm{tg}(\alpha)s\cos(\beta)-\frac{g\,\cos^2(\beta)}{s^2}{v_0^2\cos^2(\alpha)}

3 Alcance máximo

4 Caso particular

4.1 Rapidez de impacto

4.2 Componentes intrínsecas de la aceleración

4.3 Variación de la energía

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace