Partícula en anilla giratoria
De Laplace
Revisión a fecha de 10:27 2 dic 2017; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
Una pequeña anilla de masa m está ensartada sin rozamiento en un aro circular de masa M y radio b situado verticalmente que puede girar en torno a un diámetro vertical. Suponga que este aro se hace girar con velocidad angular constante Ω alrededor de este diámetro.
- Escriba la ecuación del vínculo sobre la partícula. ¿De qué tipo es?
- Determine la posición de los posibles puntos de equilibrio en la vertical, así como la estabilidad de éstos, en función del valor de Ω.
- Suponga ahora que entre la anilla y el aro existe un coeficiente de rozamiento seco μ, ¿cómo queda en ese caso la ecuación de movimiento para la anilla? Para un valor de Ω dado, ¿cuál es en ese caso el rango de posiciones verticales de equilibrio?
2 Ecuación del vínculo
La partícula está obligada a moverse sobre una línea, la cual la podemos considerar como una intersección de dos superficies:
- Una esfera de radio b
- o, en cilíndricas,
- o, en esféricas,
- Un plano giratorio. Este plano fija la coordenada θ de cilíndricas, en
- (que sería en esféricas). En cartesianas, sería
Este vínculo es liso, bilateral, reónomo (pues depende del tiempo) y geométrico. Al ser geométrico, es también holónomo.