Entrar Página Discusión Historial Go to the site toolbox

Partícula en movimiento elíptico

De Laplace

Una partícula de masa M=0.1\,\mathrm{kg} describe el movimiento elíptico (en el SI)

\vec{r}(t)=0.5\cos(10t)\vec{\imath}+0.4\,\mathrm{sen}(10t)\vec{\jmath}
  1. Calcule la velocidad y la aceleración de la partícula en todo instante.
  2. Determine la posición del centro de curvatura de la partícula en t=0\,\mathrm{s} y t=\pi/20\,\mathrm{s}.
  3. Halle la cantidad de movimiento, el momento cinético de la partícula respecto al origen de coordenadas y la energía cinética para todo instante. ¿Es constante alguna de estas magnitudes?
  4. Demuestre que la partícula obedece la ley de Hooke (con longitud natural nula). ¿Cuánto vale la constante del resorte? ¿Cuánto vale la energía mecánica de la partícula en cada instante? ¿Es constante esta magnitud?

Contenido

1 Velocidad y aceleración

Hallamos la velocidad derivando respecto al tiempo el vector de posición

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=-5.0\,\mathrm{sen}(10t)\vec{\imath}+4.0\cos(10t)\vec{\jmath}

y la aceleración como la derivada temporal de la velocidad

\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=-50\cos(10t)\vec{\imath}-40\,\mathrm{sen}(10t)\vec{\jmath}

2 Centros de curvatura

3 Cálculo de magnitudes

4 Ley de Hooke

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace