Entrar Página Discusión Historial Go to the site toolbox

Problemas de dinámica de los sistemas de partículas (GIOI)

De Laplace

(Diferencias entre revisiones)
(Página creada con '==Centro de masas de cuatro partículas en un cuadrado== Se tienen 4 masas que ocupan los vértices de un cuadrado de lado <math>a=1\,\mathrm{m}</math>. Calcule la posición del…')
(Cañón casero)
Línea 32: Línea 32:
[[Cañón casero|Solución]]
[[Cañón casero|Solución]]
 +
 +
==Péndulo balístico==
 +
Un péndulo balístico es un dispositivo elemental para determinar la velocidad de un proyectil. Consiste en un bloque pesado de madera, de masa <math>M</math> que pende de un hilo de longitud <math>L</math>. Sobre este bloque, inicialmente en reposo, impacta una bala de masa <math>m</math> que se mueve, justo antes del impacto, con velocidad <math>v_0</math>, quedándose empotrada en el bloque. Determine el ángulo máximo de desviación del péndulo respecto a la vertical. Si lo que se mide es el ángulo, obtenga una expresión para la velocidad de impacto.
 +
 +
[[Péndulo balístico|Solución]]
 +
 +
==Colisión en el interior de un cuenco==
 +
En el interior de un cuenco hemisférico de radio <math>R = 2.5\,\mathrm{m}</math> cuyo borde es horizontal, se encuentran dos partículas que pueden deslizar sin rozamiento por su superficie. Una de ellas, de masa <math>m_2 =
 +
4\,\mathrm{kg}</math>, se encuentra en reposo en el fondo del cuenco. La otra, de masa <math>m_1 = 1\,\mathrm{kg}</math> se coloca en el borde del cuenco y desde allí se suelta.
 +
# Calcule, con justificación, la velocidad que lleva la masa 1 justo antes de impactar con la masa 2. Halle la reacción del cuenco sobre la masa 1 para el mismo instante.
 +
# Si el choque es perfectamente elástico, calcule las velocidades de las dos masas justo tras la colisión.
 +
# Para este caso elástico, halle la altura máxima desde el fondo del cuenco que alcanza cada una de las masas tras el choque.
 +
# Repita los dos apartados anteriores para el caso de que la colisión sea completamente inelástica. ¿Cuánta energía se pierde en la colisión en ese caso?
 +
 +
Tómese g = 9.8m/s&sup2;
 +
 +
<center>[[Archivo:colision-masas-cuenco.png|400px]]</center>
 +
 +
[[Colisión en el interior de un cuenco|Solución]]

Revisión de 06:21 3 ene 2006

Contenido

1 Centro de masas de cuatro partículas en un cuadrado

Se tienen 4 masas que ocupan los vértices de un cuadrado de lado a=1\,\mathrm{m}. Calcule la posición del centro de masas del sistema en cada uno de los casos siguientes

  1. m_1=m_2=m_3=m_4=1\,\mathrm{kg}.
  2. m_1=m_2=3\,\mathrm{kg}, m_3=m_4=1\,\mathrm{kg}.
  3. m_1=m_4=3\,\mathrm{kg}, m_2=m_3=1\,\mathrm{kg}.
  4. m_1=m_3=3\,\mathrm{kg}, m_2=m_4=1\,\mathrm{kg}.
  5. m_1=47\,\mathrm{kg}, m_2=m_3=m_4=1\,\mathrm{kg}.

Solución

2 Propiedades de un sistema de tres partículas

Considere un sistema de tres partículas de masas m_A=100\,\mathrm{g}, m_B=200\,\mathrm{g}, m_C=100\,\mathrm{g} que en un instante dado están situadas en las posiciones de la figura y moviéndose con la velocidad indicada, siendo la rapidez de cada una de ellas 10\,\mathrm{cm}/\mathrm{s}. Suponga que la masa A y la C está unidas por un resorte de longitud natural nula y constante k=100\,\mathrm{N}/\mathrm{m}. Para el instante indicado

  1. Halle la posición del centro de masas (CM) del sistema.
  2. Calcule la cantidad de movimiento del sistema.
  3. Halle el momento cinético respecto al origen y respecto al CM.
  4. Calcule la energía cinética del sistema respecto a un sistema fijo y respecto al CM.
  5. Halle la aceleración de cada masa y la del CM.
  6. Halle la derivada respecto al tiempo del momento cinético (calculado respecto al origen).
  7. Calcule la derivada respecto al tiempo de la energía cinética del sistema (calculada respecto a un sistema fijo).

Solución

3 Cañón casero

Se puede construir un sencillo cañón casero para disparos en vertical de la siguiente manera: se toma un tubo vertical de longitud L (tómese L = 50\,\mathrm{cm}) cuyo extremo inferior se apoya en el suelo. Por su interior se dejan caer prácticamente seguidas dos bolas, siendo la inferior mucho más pesada que la superior (por ejemplo, una bola de acero y una pelota de ping-pong). Estime la altura máxima a la que subiría la bola ligera tras los rebotes. Justifique las aproximaciones que se efectúen.

Solución

4 Péndulo balístico

Un péndulo balístico es un dispositivo elemental para determinar la velocidad de un proyectil. Consiste en un bloque pesado de madera, de masa M que pende de un hilo de longitud L. Sobre este bloque, inicialmente en reposo, impacta una bala de masa m que se mueve, justo antes del impacto, con velocidad v0, quedándose empotrada en el bloque. Determine el ángulo máximo de desviación del péndulo respecto a la vertical. Si lo que se mide es el ángulo, obtenga una expresión para la velocidad de impacto.

Solución

5 Colisión en el interior de un cuenco

En el interior de un cuenco hemisférico de radio R = 2.5\,\mathrm{m} cuyo borde es horizontal, se encuentran dos partículas que pueden deslizar sin rozamiento por su superficie. Una de ellas, de masa m_2 =
4\,\mathrm{kg}, se encuentra en reposo en el fondo del cuenco. La otra, de masa m_1 = 1\,\mathrm{kg} se coloca en el borde del cuenco y desde allí se suelta.

  1. Calcule, con justificación, la velocidad que lleva la masa 1 justo antes de impactar con la masa 2. Halle la reacción del cuenco sobre la masa 1 para el mismo instante.
  2. Si el choque es perfectamente elástico, calcule las velocidades de las dos masas justo tras la colisión.
  3. Para este caso elástico, halle la altura máxima desde el fondo del cuenco que alcanza cada una de las masas tras el choque.
  4. Repita los dos apartados anteriores para el caso de que la colisión sea completamente inelástica. ¿Cuánta energía se pierde en la colisión en ese caso?

Tómese g = 9.8m/s²

Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace