Entrar Página Discusión Historial Go to the site toolbox

Propiedades de un sistema de 8 partículas

De Laplace

(Diferencias entre revisiones)
Línea 3: Línea 3:
<center>[[Archivo:ocho-masas.png]]</center>
<center>[[Archivo:ocho-masas.png]]</center>
 +
 +
respecto al sistema de ejes de la figura.
==Introducción==
==Introducción==
Línea 31: Línea 33:
<center><math>K=\frac{1}{2}M|\vec{v}_C|^2+\frac{1}{2}I|\vec{\omega}|^2</math></center>
<center><math>K=\frac{1}{2}M|\vec{v}_C|^2+\frac{1}{2}I|\vec{\omega}|^2</math></center>
 +
 +
==Resumen de los distintos casos==
 +
En el problema de cinemática correspondiente se parte de que los puntos
 +
 +
<center><math>\overrightarrow{OA}=b\vec{\imath}\qquad\overrightarrow{OB}=b\vec{\jmath}\qquad\overrightarrow{OP}=b\vec{k}</math></center>
 +
 +
con <math>b=10\,\mathrm{cm}</math> tienen las velocidades
 +
 +
{| class="bordeado"
 +
|-
 +
! Caso
 +
! <math>\vec{v}_A</math> (cm/s)
 +
! <math>\vec{v}_B</math> (cm/s)
 +
! <math>\vec{v}_P</math> (cm/s)
 +
|-
 +
! I
 +
| <math>\vec{\jmath}-\vec{k}</math>
 +
| <math>-\vec{\imath}+\vec{k}</math>
 +
| <math>\vec{\imath}-\vec{\jmath}</math>
 +
|-
 +
! II
 +
| <math>\vec{\imath}+\vec{\jmath}-\vec{k}</math>
 +
| <math>\vec{k}</math>
 +
| <math>2\vec{\imath}-\vec{\jmath}</math>
 +
|-
 +
! III
 +
| <math>\vec{\jmath}-\vec{k}</math>
 +
| <math>-\vec{\imath}+\vec{k}</math>
 +
| <math>\vec{\imath}-\vec{\jmath}+\vec{k}</math>
 +
|-
 +
! IV
 +
| <math>\vec{\imath}-\vec{\jmath}</math>
 +
| <math>\vec{\imath}-\vec{\jmath}</math>
 +
| <math>\vec{\imath}-\vec{\jmath}</math>
 +
|-
 +
! V
 +
| <math>\vec{\imath}+2\vec{\jmath}</math>
 +
| <math>\vec{\jmath}+2\vec{k}</math>
 +
| <math>2\vec{\imath}+\vec{k}</math>
 +
|-
 +
! VI
 +
| <math>\vec{\imath}+\vec{\jmath}+\vec{k}</math>
 +
| <math>\vec{\imath}+\vec{\jmath}+\vec{k}</math>
 +
| <math>\vec{0}</math>
 +
|}
 +
 +
Para estos casos,se calcula la velocidad angular del sólido, siendo el resultado
 +
 +
{| class="bordeado"
 +
|-
 +
! Caso
 +
! <math>\vec{\omega}</math> (rad/s)
 +
|-
 +
! I
 +
| <math>\frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)</math>
 +
|-
 +
! II
 +
| <math>\frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)</math>
 +
|-
 +
! IV
 +
| <math>\vec{0}</math>
 +
|-
 +
! V
 +
|<math>\frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)</math>
 +
|-
 +
! VI
 +
|<math>\frac{1}{10}\left(\vec{\imath}-\vec{\jmath}\right)</math>
 +
|}
[[Categoría:Problemas de dinámica del sólido rígido (GIE)]]
[[Categoría:Problemas de dinámica del sólido rígido (GIE)]]

Revisión de 16:35 31 dic 2013

1 Enunciado

Para los movimientos compatibles del problema “Clasificación de movimientos de un sólido” calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.

Archivo:ocho-masas.png

respecto al sistema de ejes de la figura.

2 Introducción

Este problema combina la solución de otros dos problemas. Por un lado, en “Clasificación de movimientos de un sólido” se establecen las propiedades cinemáticas de varios conjuntos de velocidades de tres puntos de un sólido. En segundo lugar, en “Momento de inercia de un sistema de partículas”, se halla el momento de inercia de un sistema de ocho partículas como el que se emplea en este problema.

La técnica general en lo que sigue es:

Cantidad de movimiento
Para un sistema de partículas se cumple
\vec{p}=M\vec{v}_C
donde M es la masa total del sistema y \vec{v}_C la velocidad de su centro de masas, la cual se puede calcular como la de un punto más del sólido
\vec{v}_C=\vec{v}_A+\vec{\omega}\times\overrightarrow{AC}
Momento cinético
El momento de n sistema de partículas vale
\vec{L}_O=M\vec{r}_C\times\vec{v}_C+\vec{L}_C
que en el caso particular de un sólido se convierte en
\vec{L}_O=M\vec{r}_C\times\vec{v}_C+I\vec{\omega}
siendo I el momento de inercia respecto a un eje paralelo al EIRMD y que pasa por el centro de masas. En el caso de esta distribución de ocho masas, tal como se ve en otro problema, el momento de inercia es el mismo sea cual sea la dirección y vale
I=4mb^2\,
Energía cinética
El tratamiento es similar al del momento cinético. la energía cinética de este sólido vale
K=\frac{1}{2}M|\vec{v}_C|^2+\frac{1}{2}I|\vec{\omega}|^2

3 Resumen de los distintos casos

En el problema de cinemática correspondiente se parte de que los puntos

\overrightarrow{OA}=b\vec{\imath}\qquad\overrightarrow{OB}=b\vec{\jmath}\qquad\overrightarrow{OP}=b\vec{k}

con b=10\,\mathrm{cm} tienen las velocidades

Caso \vec{v}_A (cm/s) \vec{v}_B (cm/s) \vec{v}_P (cm/s)
I \vec{\jmath}-\vec{k} -\vec{\imath}+\vec{k} \vec{\imath}-\vec{\jmath}
II \vec{\imath}+\vec{\jmath}-\vec{k} \vec{k} 2\vec{\imath}-\vec{\jmath}
III \vec{\jmath}-\vec{k} -\vec{\imath}+\vec{k} \vec{\imath}-\vec{\jmath}+\vec{k}
IV \vec{\imath}-\vec{\jmath} \vec{\imath}-\vec{\jmath} \vec{\imath}-\vec{\jmath}
V \vec{\imath}+2\vec{\jmath} \vec{\jmath}+2\vec{k} 2\vec{\imath}+\vec{k}
VI \vec{\imath}+\vec{\jmath}+\vec{k} \vec{\imath}+\vec{\jmath}+\vec{k} \vec{0}

Para estos casos,se calcula la velocidad angular del sólido, siendo el resultado

Caso \vec{\omega} (rad/s)
I \frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)
II \frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)
IV \vec{0}
V \frac{1}{10}\left(\vec{\imath}+\vec{\jmath}+\vec{k}\right)
VI \frac{1}{10}\left(\vec{\imath}-\vec{\jmath}\right)

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace