Integración aproximada de la velocidad
De Laplace
(Diferencias entre revisiones)
Antonio (Discusión | contribuciones)
(Página creada con '==Enunciado== Una partícula se mueve a lo largo de una recta, siendo su velocidad (en el SI) como función del tiempo, la dada por la gráfica <center>Archivo:graf-vt.png<…')
Edición más nueva →
(Página creada con '==Enunciado== Una partícula se mueve a lo largo de una recta, siendo su velocidad (en el SI) como función del tiempo, la dada por la gráfica <center>Archivo:graf-vt.png<…')
Edición más nueva →
Revisión de 17:00 1 nov 2013
Contenido |
1 Enunciado
Una partícula se mueve a lo largo de una recta, siendo su velocidad (en el SI) como función del tiempo, la dada por la gráfica

La partícula parte de x = 0.
- Aprovechando los puntos en que la curva cruza la cuadrícula, calcule aproximadamente la posición en que se encontrará la partícula en
.
- Calcule el valor exacto de esta posición, sabiendo que la ley para la velocidad, en el SI, es

- ¿Cuál es el error relativo cometido en el apartado anterior?
- Con ayuda de la cuadrícula halle el valor aproximado de la aceleración en
. Calcule el valor exacto y el error cometido con la aproximación.