Movimiento de una barra apoyada
De Laplace
(→Ecuación de movimiento) |
(→Solución sin usar la energía) |
||
Línea 156: | Línea 156: | ||
<center><math>I\ddot{\theta} = (Mg+M\ddot{y}_C)x_c-(M\ddot{x}_C)y_c</math></center> | <center><math>I\ddot{\theta} = (Mg+M\ddot{y}_C)x_c-(M\ddot{x}_C)y_c</math></center> | ||
- | Ya hemos eliminado las fuerzas. Ahora queda escribir <math>x_C</math> e <math>y_C</math> en función de <math>\theta</math>. Para ello, necesitamos hallar la primera derivada | + | Ya hemos eliminado las fuerzas. Ahora queda escribir <math>x_C</math> e <math>y_C</math> en función de <math>\theta</math>. Para ello, necesitamos hallar la primera derivada respecto al tiempo, que ya conocemos, |
- | \qquad\Rightarrow\qquad \left\{\begin{array}{rcl}\dot{x}_c & = & \displaystyle \frac{H}{2}\dot{\theta}\cos(\theta) \\ && \\ \dot{y}_c & = & -\displaystyle\frac{H}{2}\dot{\theta}\,\mathrm{sen}(\theta)\end{array}\right. | + | <center><math>\left\{\begin{array}{rcl}x_c & = & \displaystyle \frac{H}{2}\mathrm{sen}(\theta) \\ && \\ y_c & = & \displaystyle\frac{H}{2}\cos(\theta)\end{array}\right. \qquad\Rightarrow\qquad \left\{\begin{array}{rcl}\dot{x}_c & = & \displaystyle \frac{H}{2}\dot{\theta}\cos(\theta) \\ && \\ \dot{y}_c & = & -\displaystyle\frac{H}{2}\dot{\theta}\,\mathrm{sen}(\theta)\end{array}\right.</math></center> |
y la segunda derivada respecto al tiempo, aplicando reiteradamente la regla de la cadena. | y la segunda derivada respecto al tiempo, aplicando reiteradamente la regla de la cadena. | ||
- | <center><math> | + | <center><math>\left\{\begin{array}{rcl}\dot{x}_c & = & \displaystyle \frac{H}{2}\dot{\theta}\cos(\theta) \\ && \\ \dot{y}_c & = & -\displaystyle\frac{H}{2}\dot{\theta}\,\mathrm{sen}(\theta)\end{array}\right.\qquad\Rightarrow\qquad \left\{\begin{array}{rcl}\ddot{x}_c & = & \displaystyle \frac{H}{2}\left(\ddot{\theta}\cos(\theta)-\dot{\theta}^2\mathrm{sen}(\theta)\right) \\ && \\ \dot{y}_c & = & \displaystyle\frac{H}{2}\left(-\ddot{\theta}\,\mathrm{sen}(\theta)-\dot{\theta}^2\cos(\theta)\right)\end{array}\right.</math></center> |
==Fuerzas de reacción== | ==Fuerzas de reacción== | ||
==Separación de la pared== | ==Separación de la pared== | ||
[[Categoría:Problemas de dinámica del sólido rígido (GIE)]] | [[Categoría:Problemas de dinámica del sólido rígido (GIE)]] |
Revisión de 09:59 12 ene 2013
Contenido |
1 Enunciado
En el mismo sistema del problema “Equilibrio de una barra apoyada”, considérese el caso en que no hay rozamiento ni con la pared ni con el suelo. Si la barra se encuentra inicialmente en la posición vertical y por una pequeña perturbación comienza a deslizarse resbalando por el suelo y la pared:
- ¿Cuál es la ecuación de movimiento para el ángulo θ que forma la barra con la pared?
- ¿Cuánto valen las fuerzas que ejercen la pared y el suelo para cada posición de la barra?
- ¿Llega a separarse en algún momento de la pared? ¿Para qué ángulo?
2 Ecuación de movimiento
2.1 Planteamiento
La barra, al descender, va variando el ángulo que forma con la pared, que va aumentando progresivamente. El movimiento de la barra está gobernado por tres fuerzas:
- Su peso, aplicado en su centro de masas, que se halla en el centro de la barra, y que apunta en la dirección vertical hacia abajo.
- La fuerza de reacción del suelo, aplicada en el punto A, donde se apoya la barra. Al no haber rozamiento, esta fuerza es puramente perpendicular a la superficie
- La fuerza de reacción de la pared, aplicada en el punto B, donde se apoya la barra. Puesto que aquí tampoco hay rozamiento, apunta en la dirección perpendicular, que ahora es horizontal
La magnitud de estas dos fuerzas es desconocida, por lo que se trata de incógnitas adicionales del problema.
Por semejanza de triángulos, si la posición instantánea del centro de masas es
la de los puntos de contacto es
A su vez, estas posiciones se relacionan con el ángulo θ por
Las ecuaciones que gobiernan el movimiento de la barra son:
- Teorema de la cantidad de movimiento
- La masa por la aceleración del centro de masas es igual a la resultante de todas las fuerzas externas aplicadas
Separando por componentes
- Teorema del momento cinético
- La derivada del momento cinético respecto al centro de masas es igual al momento resultante respecto a este punto de las fuerzas externas aplicadas.
- En este caso, el peso no tiene momento, por estar aplicado en el propio CM y las dos fuerzas de reacciones producen giros en sentidos opuestos. Tanto el momento cinético como los momentos de las fuerzas van en la dirección de por lo que podemos escribir
Tenemos entonces tres ecuaciones con cinco incógnitas (las dos componentes de la aceleración lineal, la aceleración angular y las dos fuerzas de reacción)
Para completar estas dos ecuaciones añadimos las condiciones de vínculo, que relacionan las tres variables
Este sistema de cinco ecuaciones se puede resolver completamente y más adelante veremos cómo se hace. No obstante, ante de exponer esa solución, consideraremos un atajo basado en hacer uso de la conservación de la energía mecánica.
2.2 Solución empleando la energía mecánica
El teorema de la energía mecánica para un sólido nos dice que
siendo E la energía mecánica, que en este caso vale
y el segundo término representa la potencia de las fuerzas externas no conservativas aplicadas, que en este problema son las dos fuerzas de reacción (el peso ya ha sido considerado al incluir la energía potencial).
Ahora bien, las fuerzas de reacción son perpendiculares a las superficies, mientras que las velocidades de los puntos de contacto son tangentes a ellas, por lo que
Esto quiere decir que estas fuerzas no realizan trabajo y la energía mecánica se conserva
Esta ecuación nos resuelve completamente el problema. Calculamos en primer lugar la energía cinética de traslación
donde las componentes de la velocidad del CM valen
Esto nos da la energía cinética de traslación
La de rotación se obtiene directamente
Sumando las dos cantidades queda
La energía potencial la da la altura del centro de masas
La suma de la energía cinética y la potencial nos da la energía mecánica
El valor de la energía mecánica, que es constante, lo obtenemos particularizando para el estado inicial. Si al principio la barra está en reposo y prácticamente vertical
lo que nos da la ley de conservación de la energía
A partir de aquí, podemos determinar completamente el movimiento. Despejando el cuadrado de la velocidad angular
Tomando la raíz cuadrada hallamos la velocidad angular
De aquí se puede integrar el ángulo como función del tiempo, por ser la ecuación separable
Calculando las integrales y despejando se obtiene θ = θ(t)
Alternativamente, podemos derivar la velocidad angular respecto al tiempo, para hallar la aceleración angular
2.3 Solución sin usar la energía
Si no estamos seguros de si la energía se conserva o no, el método anterior puede parecer inadecuado. En ese caso, siempre podemos determinar la ecuación de movimiento a partir del teorema de la cantidad de movimiento y del del momento cinético.
La forma de hacerlo es reducir el sistema de ecuaciones para xC, yC y θ (junto con las fuerzas de reacción, en uno para θ y sus derivadas.
En primer lugar, despejamos las fuerzas de reacción
y sustituimos en la ecuación del momento cinético
Ya hemos eliminado las fuerzas. Ahora queda escribir xC e yC en función de θ. Para ello, necesitamos hallar la primera derivada respecto al tiempo, que ya conocemos,
y la segunda derivada respecto al tiempo, aplicando reiteradamente la regla de la cadena.