Entrar Página Discusión Historial Go to the site toolbox

Problemas de herramientas matemáticas (GIE)

De Laplace

(Diferencias entre revisiones)
Antonio (Discusión | contribuciones)
(Página creada con '==Arco capaz== Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectore…')
Edición más nueva →

Revisión de 23:30 3 oct 2011

Contenido

1 Arco capaz

Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectores \overrightarrow{AP} y \overrightarrow{BP} son ortogonales.

Inversamente, sean A, B y P tres puntos tales que \overrightarrow{AP} \perp \overrightarrow{BP}. Pruebe que el centro de la circunferencia que pasa por A, B y P se encuentra en el punto medio del segmento AB.

2 Coseno y seno de una diferencia

A partir del producto escalar y del vectorial de dos vectores del plano, con módulo unidad, demuestre las fórmulas trigonométricas para el coseno y el seno de una diferencia de dos ángulos.

3 Construcción de una base

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira \{\vec{T},\vec{N},\vec{B}\}, tal que

  1. El primer vector, \vec{T}, vaya en la dirección y sentido de \vec{v}
  2. El segundo, \vec{N}, esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de

\vec{v}) que el vector \vec{a}.

  1. El tercero, \vec{B}, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

4 Ejemplo de operaciones con dos vectores

Dados los vectores

\vec{v}=2.0\vec{\imath}+3.5\vec{\jmath}-4.2\vec{k}\qquad\qquad\vec{a}=4.5\vec{\imath}-2.2\vec{\jmath}+1.5\vec{k}
  1. ¿Qué ángulo forman estos dos vectores?
  2. ¿Qué área tiene el paralelogramo que tiene a estos dos vectores por lados?
  3. Escriba \vec{a} como suma de dos vectores, uno paralelo a \vec{v} y otro ortogonal a él.

5 Formulas vectoriales potencialmente incorrectas

De las siguientes expresiones, indique cuáles son necesariamente incorrectas. Aquí las diferentes letras representan las magnitudes definidas en el problema de Ejemplos de cálculo de dimensiones, R es una distancia y \vec{r} el vector de posición; t es el tiempo:

(a) \vec{F} = m\frac{\vec{v}\times\vec{a}}{\vec{v}}
(b) \vec{F}\times(\vec{v}\times\vec{a}) = (\vec{p}\cdot\vec{a})\times\vec{a}
(c) \frac{\vec{L}}{R} = \vec{F}t-\vec{v}
(d) (\vec{r}\times\vec{p})\vec{L} = R(\vec{r}\cdot\vec{p})\vec{p}
(e) \frac{\vec{F}-\vec{p}/t}{m} =  \frac{\vec{r}-\vec{v}t}{t^2-t}
(f) \frac{1}{\vec{r}} = \frac{\vec{r}}{r^2}
(g) L  = \vec{r}\times\vec{p}
(h) \frac{W}{t} = \vec{F}\times\left(\vec{v}-\frac{R}{t}\right)

6 Determinación de un vector a partir de sus proyecciones

Se tiene un vector conocido, no nulo, \vec{A} y uno que se desea determinar, \vec{X}. Se dan como datos su producto escalar y su producto vectorial por \vec{A}

\vec{A}\cdot\vec{X}=k\qquad \vec{A}\times\vec{X} = \vec{C}

Determine el valor de \vec{X}. ¿Es suficiente una sola de las dos ecuaciones para hallar \vec{X}?

7 Cálculo de las componentes de un vector

De una fuerza \vec{F}_1 se sabe que tiene de intensidad 10 N y que los ángulos que forma con los semiejes OX y OY positivos valen 60\tss{o}. Determine las componentes cartesianas de esta fuerza. ¿Existe solución? ¿Es única?

Si a esta fuerza se le suma otra \vec{F}_2 = -10\vec{\imath}-10\vec{\jmath}\ (\mathrm{N}), ¿qué ángulo forma la resultante con los ejes coordenados?

8 Cálculo numérico de la derivada del seno

Se trata de calcular la derivada de f(x)=\,\mathrm{sen}(x^\circ) para x^\circ=0^\circ.

  1. Exprese el cociente Δf / Δx, cuando x_1^\circ=0^\circ y x_2^\circ=x^\circ.
  2. Calcule numéricamente el cociente anterior para x^\circ=1^\circ, x^\circ=0.1^\circ, x^\circ=0.01^\circ,… hasta x^\circ=(10^{-6})^\circ. ¿A cuanto tiende el límite?
  3. Multiplique los resultados anteriores por 180. A la vista de los resultados, ¿cuanto vale la derivada de \mathrm{sen}(x^\circ) en x=0^\circ?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace