Entrar Página Discusión Historial Go to the site toolbox

Leyes de Newton (GIE)

De Laplace

(Diferencias entre revisiones)
(Tercer principio: ley de acción y reacción)
(Tercer principio: ley de acción y reacción)
Línea 137: Línea 137:
Ambas fuerzas actúan simultáneamente. Por ello, hay que señalar que el nombre de “acción y reacción”, con el que se conoce habitualmente a esta ley, es engañoso en cuanto a que sugiere a que primero actúa la acción y posteriormente la reacción. No es así y no existe distinción alguna que convierta a una de las fuerzas en acción y a la otra en reacción.
Ambas fuerzas actúan simultáneamente. Por ello, hay que señalar que el nombre de “acción y reacción”, con el que se conoce habitualmente a esta ley, es engañoso en cuanto a que sugiere a que primero actúa la acción y posteriormente la reacción. No es así y no existe distinción alguna que convierta a una de las fuerzas en acción y a la otra en reacción.
-
<center>Archivo:Caballo-carro.png</center>
+
<center>[[Archivo:Caballo-carro.png]]</center>
En el caso del caballo y el carro, el carro tira del caballo exactamente con la misma fuerza, en módulo y dirección, y de sentido opuesto, con la que caballo tira del carro.
En el caso del caballo y el carro, el carro tira del caballo exactamente con la misma fuerza, en módulo y dirección, y de sentido opuesto, con la que caballo tira del carro.

Revisión de 18:53 12 sep 2011

Contenido

1 Introducción

Los principios de la dinámica o Leyes de Newton son los axiomas por los que se rigen las partículas y sistemas en la dinámica clásica. Fueron enunciados por Newton, basándose en los trabajos de Galileo, en sus Principia Mathematica.

Una versión de estos principios, enunciada de forma moderna, es la siguiente, donde encabezamos cada principio con el nombre con el que se lo conoce habitualmente:

2 Primer principio: Principio de inercia

El primer principio de la dinámica, también conocido como Primera Ley de Newton puede formularse como

Toda partícula libre de interacciones permanece en reposo o en estado de movimiento rectilíneo y uniforme, cuando se observa desde un sistema de referencia inercial.

Normalmente se formula usando “fuerzas” en lugar de “interacciones” pero puesto que ello requiere el haber definido previamente el concepto de fuerza es preferible enunciarlo de una manera más genérica.

Este principio fue enunciado inicialmente por Galileo.

Lo que nos dice esta ley es que el espacio que nos rodea no está curvado de ninguna forma ya que las trayectorias de las partículas libres de interacciones son rectas y no otras curvas, como circunferencias (como ocurriría en la superficie de una esfera) o hélices (como ocurriría en la superficie de un cilindro).

Esta ley contradice ciertas intuiciones comunes pero incorrectas:

  • Aristóteles pensaba que para que un objeto se moviera era necesaria siempre una fuerza. En ausencia de fuerza, un objeto se para. Esto es incorrecto porque no tiene en cuenta el rozamiento como una fuerza más. Si no hubiera rozamiento alguno, un objeto no se pararía. Así, por ejemplo, una nave que viaja por el espacio no necesita activar sus motores la mayor parte del tiempo (independientemente de lo que se vea en las películas).
  • En la Edad Media, se consideraba que cuando se lanzaba un objeto (como una piedra), se le comunicaba una fuerza y que cuando viajaba por el aire era porque seguía actuando "la fuerza con que se había lanzado", la cual se iba agotando progresivamente. Esto también es falso. La fuerza de lanzamiento solo actúa en el instante inicial. Posteriormente, sólo el peso y el rozamiento, son responsables del movimiento de la partícula.

El primer principio de la dinámica conlleva la clasificación de los sistemas de referencia en inerciales (aquellos desde los cuales una partícula libre de interacciones se observa en reposo o movimiento rectilíneo y uniforme) y no inerciales (aquellos respecto a los que no se cumple este principio de inercia).

3 Segundo principio: Segunda Ley de Newton

Cuando sobre un cuerpo se aplica una fuerza, éste deja de realizar un movimiento rectilíneo y uniforme, esto es, su velocidad deja de ser constante. El segundo principio de la dinámica nos dice qué es lo que ocurre cuando a una partícula se le aplica una fuerza

“Cuando sobre un cuerpo de masa m se aplica una fuerza neta \vec{F} adquiere una aceleración proporcional a la fuerza aplicada e inversamente proporcional a la masa del cuerpo”
\vec{a}=\frac{1}{m}\vec{F}

o, como se escribe habitualmente

\vec{F}=m\vec{a}

Si hay más de una fuerza aplicad simultáneamente, \vec{F} es la resultante de las fuerzas aplicadas sobre la partícula, hallada como suma vectorial de ellas.

\vec{F}=\vec{F}_1+\vec{F}_2+\cdots

Así, por ejemplo, para un avión en vuelo se considera que está sometido a cuatro fuerzas: su peso, la sustentación debida al aire, el empuje debido a la propulsión y la resistencia debida a la fricción con el aire

Archivo:fuerzas-avion.jpg

Dependiendo del balance entre las diferentes fuerzas se obtiene la aceleración en la dirección deseada. Cuando el avión vuela a velocidad constante, quiere decir que la suma de las fuerzas aplicadas es nula.

Cuando actúan varias fuerzas independientes, sus efectos se suman, según el

Principio de superposición
Si sobre un mismo punto material actúan dos fuerzas simultáneamente, la aceleración que adquiere es la suma vectorial de las aceleraciones que le comunicarían cada una de las dos fuerzas por separado.
También se conoce a éste como principio de independencia de acción de las fuerzas, y se puede generalizar para un número arbitrario de fuerzas.

El que la aceleración sea inversamente proporcional a la masa, nos dice que cuanto mayor es la masa de un cuerpo menor es la aceleración que adquiere. Esta propiedad de la materia se denomina inercia. Por ello, la masa, en este contexto, más que medir la cantidad de materia, mide su inercia, por lo que se denomina técnicamente masa inercial.

Esta ley requiere el conocimiento de las fuerzas aplicadas, como un dato del problema. Estas fuerzas deben ser obtenidas independientemente para que la ley tenga verdadero significado. Por ello, precisamos de algún modelo físico que nos proporcione la expresión de la fuerza. Entre estos modelos se encuentran:

  • La ley de Hooke, para el oscilador armónico
\vec{F}=-k\vec{r}\,
  • La ley de Newton de la Gravitación Universal, para el movimiento de una masa en el campo gravitatorio de otra
\vec{F}=-G\frac{m_1m_2(\vec{r}_2-\vec{r}_1)}{|\vec{r}_2-\vec{r}_1|^3}
En esta ley aparece también la masa, como creadora de campo gravitatorio (la denominada masa gravitatoria). Newton, estableció que la masa inercial y la gravitatoria tenían el mismo valor, aunque no pudo explicar por qué.
La ley de la Gravitación contiene al caso particular e importante del movimiento de una masa pequeña en las proximidades de la superficie terrestre
\vec{F}=m\vec{g}\,
  • La ley de Lorentz, para el movimiento de una partícula en un campo electromagnético
\vec{F}=q\left(\vec{E}+\vec{v}\times\vec{B}\right)\,
Un caso particular de esta ley es la ley de Coulomb, para la fuerza producida por una carga en reposo
\vec{F}=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2(\vec{r}_2-\vec{r}_1)}{|\vec{r}_2-\vec{r}_1|^3}

Una característica común a todas estas leyes de fuerza es que proporcionan una fuerza dependiente de la posición y de la velocidad instantáneas de la partícula.

3.1 Expresión en componentes

3.1.1 Cartesianas

Separando en las componentes cartesianas quedan las tres ecuaciones escalares


\begin{array}{rcl}
m\ddot{x} & = & F_x\\
m\ddot{y} & = & F_y\\
m\ddot{z} & = & F_z
\end{array}

Si cada componente de la fuerza depende solo de la coordenada correspondiente, estas ecuaciones se pueden resolver por separado y el movimiento a lo largo de cada eje es independiente de los otros dos. En la mayoría de los casos, no obstante, las componentes de la fuerza dependen de todoas las coordenadas y estas ecuaciones están acopladas. No podemos resolver sin resolver las otras dos al mismo tiempo.

3.1.2 Polares y cilíndricas

En el caso de un movimiento en un plano también pueden usarse las coordenadas polares. Sustituyendo la expresión de la aceleración en estas componentes quedan las ecuaciones


\begin{array}{rcl}
m(\ddot{\rho}-\rho\dot{\theta}^2) & = & F_\rho\\
m(2\dot{\rho}\dot{\theta}+\rho\ddot{\theta}) & = & F_\theta
\end{array}

siendo Fρ y Fθ las componentes radial y acimutal de la fuerza.

En un movimiento tridimensional, puede incluirse una tercera coordenada perpendicular a este plano. Se dice entonces que tenemos coordenadas cilíndricas. La segunda ley de Newton se escribe en ellas


\begin{array}{rcl}
m(\ddot{\rho}-\rho\dot{\theta}^2) & = & F_\rho\\
m(2\dot{\rho}\dot{\theta}+\rho\ddot{\theta}) & = & F_\theta\\
m\ddot{z} & = & F_z
\end{array}

3.1.3 Intrínsecas

Si descomponemos la fuerza en sus componentes paralela y perpendicular a la velocidad instantánea

F_t = \frac{\vec{F}\cdot\vec{v}}{|\vec{v}|}\qquad\qquad F_n = \frac{|\vec{F}\times\vec{v}|}{|\vec{v}|}

quedan las ecuaciones para las componentes intrínsecas de la aceleración

m\frac{\mathrm{d}|\vec{v}|}{\mathrm{d}t}=F_t\qquad \qquad m\frac{|\vec{v}|^2}{R}=F_n

4 Tercer principio: ley de acción y reacción

Los dos primeros principios de la dinámica nos dicen cómo se comportan las partículas en ausencia de fuerzas o sometidas a una fuerza conocida. El tercer principio de la dinámica establece una propiedad básica de esas fuerzas de interacción entre partículas:

Si una partícula A ejerce en un instante dado una fuerza sobre una partícula B, la partícula B ejerce sobre A una fuerza de igual módulo e igual dirección, pero de sentido contrario.

Matemáticamente

\vec{F}_{A\to B} = -\vec{F}_{B\to A}

Hay que destacar que estas dos fuerzas no se anulan mutuamente, ya que se ejercen sobre partículas distintas. Sólo en el caso de que se encuentren rígidamente unidas se cancelarán sus efectos.

Además se cumple para casi todas las fuerzas, que el par acción-reacción va en la dirección de la recta que une las dos partículas

Archivo:accion-reaccion.png        \vec{F}_{A\to B}\times\overrightarrow{AB}=\vec{0}

Ambas fuerzas actúan simultáneamente. Por ello, hay que señalar que el nombre de “acción y reacción”, con el que se conoce habitualmente a esta ley, es engañoso en cuanto a que sugiere a que primero actúa la acción y posteriormente la reacción. No es así y no existe distinción alguna que convierta a una de las fuerzas en acción y a la otra en reacción.

Archivo:Caballo-carro.png

En el caso del caballo y el carro, el carro tira del caballo exactamente con la misma fuerza, en módulo y dirección, y de sentido opuesto, con la que caballo tira del carro.

Cuando caminamos, ejercemos una fuerza hacia atrás sobre el suelo, que es respondida, por el rozamiento, con una hacia adelante del suelo sobre nosotros que es la que nos permite avanzar. Del mismo modo, al saltar, es la fuerza hacia arriba ejercida por el suelo, la que nos eleva.

Sobre la acción y la reacción existen una serie de errores comunes, que se deben evitar:

  • Como se ha dicho, la acción y la reacción se aplican sobre cuerpos diferentes. Por tanto, no se anulan mutuamente.
  • Un par de fuerzas opuestas aplicadas en el mismo cuerpo no constituyen un par acción-reacción. Así, en el ejemplo del avión, la sustentación y el peso no son acción y reacción.
  • En la misma línea, no hay confundir las fuerzas de reacción vincular con un par acción-reacción. Un libro situado sobre una mesa experimenta su peso y la reacción de la mesa, pero éstas dos fuerzas no constituyen un par. La reacción al peso es la atracción que el libro ejerce sobre la Tierra, y que se situará en el centro de ésta. La fuerza ejercida por la mesa es la reacción de las fuerzas (electromagnéticas) que el libro ejerce sobre ella, debido a la compresión de sus átomos.
  • No hay que mezclar acción y reacción con fuerzas de inercia. La fuerza centrífuga no es la reacción a la centrípeta, entre otras cosas, porque la fuerza centrífuga no es una verdadera fuerza.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace