Entrar Página Discusión Historial Go to the site toolbox

Ley de Gauss para el campo magnético

De Laplace

(Diferencias entre revisiones)
(Significado geométrico)
(Significado geométrico)
Línea 51: Línea 51:
El que el flujo se anule para cualquier superficie se puede interpretar como que en cada superficie cerrada entran tantas líneas de campo como entran. Ello prohíbe que las líneas de campo  sean abiertas (comiencen o acaben  en puntos), ya que el flujo magnético alrededor de un extremo sería no nulo.
El que el flujo se anule para cualquier superficie se puede interpretar como que en cada superficie cerrada entran tantas líneas de campo como entran. Ello prohíbe que las líneas de campo  sean abiertas (comiencen o acaben  en puntos), ya que el flujo magnético alrededor de un extremo sería no nulo.
-
<center>[[Imagen:LeygaussBintegral.gif]]</center>
+
<center>[[Imagen:LeygaussBintegral.gif|400px]]</center>
En términos de imanes, quiere decir que no se pueden separar los Polos Norte de los Polos Sur.
En términos de imanes, quiere decir que no se pueden separar los Polos Norte de los Polos Sur.

Revisión de 17:17 21 mar 2009

Contenido

1 Forma diferencial

Para calcular la divergencia del campo magnético, se parte de la ley de Biot y Savart para una distribución de corriente de volumen

\mathbf{B}\left(\mathbf{r}\right) = \frac{\mu _0}{4\pi}\int \mathbf{J}(\mathbf{r}')\times\frac{\left(\mathbf{r} - \mathbf{r}'\right)}{\left|\mathbf{r} - \mathbf{r}'\right|^3}\mathrm{d}\tau'

y, operando se llega a que puede escribirse como

\mathbf{B}=\nabla\times\mathbf{A}        \mathbf{A}=\frac{\mu_0}{4\pi}\int\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\mathrm{d}\tau'

de donde es inmediato que

\nabla\times\mathbf{B}=0

esto es, el campo magnético es un campo solenoidal: carece de fuentes escalares. Por analogía con el caso eléctrico, denominamos a esta ecuación Ley de Gauss para el campo magnético.

Físicamente, por analogía con el campo eléctrico, podemos decir que esta ley expresa que el campo magnético carece de fuentes escalares, esto es, que no existen las cargas magnéticas (conocidas como monopolos).

Realmente, la ecuación sólo la hemos demostrado para el campo creado por corrientes estacionarias. Sin embargo, la evidencia experimental muestra que es válida siempre: para corrientes, para imanes, en situaciones estacionarias o dinámicas. Es la experiencia la que indica que no existen los monopolos.

1.1 Demostración

Para demostrar la ley de Gauss para el campo magnético partiendo de la ley de Biot y Savart, hacemos uso de la identidad

\frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|^3} =  -\nabla \left(\frac{1}{\left|\mathbf{r} - \mathbf{r}' \right|} \right)

lo que nos permite escribir la ley de Biot y Savart como

\mathbf{B}\left(\mathbf{r}\right) = \frac{\mu _0}{4\pi}\int \nabla \left(\frac{1}{\left|\mathbf{r} - \mathbf{r}' \right|} \right)\times \mathbf{J}(\mathbf{r}')\,\mathrm{d}\tau'

y aplicando la identidad vectorial

\nabla\times(\phi\,\mathbf{A})=(\nabla\phi)\times\mathbf{A}+\phi\,(\nabla\times\mathbf{A})

podemos separar el campo en dos integrales

\mathbf{B}\left(\mathbf{r}\right) = \frac{\mu _0}{4\pi}\int \nabla \times \left(\frac{\mathbf{J}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}' \right|} \right)\,\mathrm{d}\tau'-\frac{\mu _0}{4\pi}\int \frac{\nabla\times\mathbf{J}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}' \right|} \,\mathrm{d}\tau'

La segunda integral se anula porque \mathbf{J} es función de \mathbf{r}', no de \mathbf{r}. En la primera se puede invertir el orden de la integral y el rotacional por actuar una sobre \mathbf{r}' y el otro sobre \mathbf{r}, resultando finalmente

\mathbf{B}\left(\mathbf{r}\right) = \nabla\times\left(\frac{\mu _0}{4\pi}\int \frac{\mathbf{J}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}' \right|} \,\mathrm{d}\tau'\right)

2 Forma integral

La ley de Gauss para el campo magnético equivale a decir que el flujo del campo magnético a través de cualquier superficie cerrada es nulo,

\oint \mathbf{B}\cdot\mathrm{d}\mathbf{S}=0

La demostración es inmediata a partir de la forma diferencial, sin más que aplicar el teorema de Gauss

\oint_{\partial\tau} \mathbf{B}\cdot\mathrm{d}\mathbf{S} = \int_\tau \nabla\cdot\mathbf{B}\,\mathrm{d}\tau=\int_\tau 0\,\mathrm{d}\tau = 0

2.1 Significado geométrico

El que el flujo se anule para cualquier superficie se puede interpretar como que en cada superficie cerrada entran tantas líneas de campo como entran. Ello prohíbe que las líneas de campo sean abiertas (comiencen o acaben en puntos), ya que el flujo magnético alrededor de un extremo sería no nulo.

En términos de imanes, quiere decir que no se pueden separar los Polos Norte de los Polos Sur.

3 Condición de salto

4 ¿Son cerradas las líneas de campo magnético?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace