Entrar Página Discusión Historial Go to the site toolbox

Campo magnético de corrientes estacionarias

De Laplace

(Diferencias entre revisiones)
(Fuerza sobre un circuito)
(Ley de Biot y Savart)
Línea 54: Línea 54:
-
==Ley de Biot y Savart==
+
 
 +
 
==Fuentes del campo magnético. Ley de Ampère==
==Fuentes del campo magnético. Ley de Ampère==
==El potencial vector magnético==
==El potencial vector magnético==

Revisión de 18:26 20 mar 2009

Contenido

1 Fuerza sobre una carga en movimiento

Artículo completo: Ley de Lorentz

Se ve en electrostática que una carga puntual en reposo experimenta una fuerza \mathbf{F}=q\mathbf{E}. Si esta carga se encuentra en movimiento, debemos añadir una fuerza adicional, proporcional a la velocidad y ortogonal a ella, de acuerdo con la ley de Lorentz

\mathbf{F} = q\left(\mathbf{E}+\mathbf{v}\times\mathbf{B}\right)

A esta fuerza adicional se la denomina fuerza magnética, y al campo vectorial \mathbf{B}, que da la magnitud de esta fuerza, se lo denomina campo magnético (también conocido como inducción magnética y como densidad de flujo magnético).

El campo magnético se mide en el SI en Teslas (T), siendo 1 T = 1 N/A·m. Un Tesla es una cantidad grande para los valores usuales, por lo que con frecuencia se usa como unidad el Gauss (1 Gauss = 0.0001 T).

La fuerza sobre una carga en movimiento puede extenderse a un conjunto de ellas, que formarán una densidad de corriente. Para el caso de una densidad \mathbf{J}, la fuerza magnética es

\mathbf{F}_\mathrm{m}=\int \mathbf{J}\times\mathbf{B}\,\mathrm{d}\tau

y análogamente se tiene la fuerza sobre una distribución de corriente superficial y sobre un conductor filiforme.

\mathbf{F}_\mathrm{m}=\int \mathbf{K}\times\mathbf{B}\,\mathrm{d}S        \mathbf{F}_\mathrm{m}=I\int d\mathbf{r}\times\mathbf{B}

Si tenemos un conjunto de distribuciones, la resultante será la suma de la fuerza sobre cada una de ellas.

2 Campo magnético debido a una corriente

Artículo completo: Campo magnético debido a una corriente

Los campos magnéticos pueden tener distintas causas. Entre ellas, se encuentran las propias corrientes eléctricas.

El campo magnético creado por una carga puntual en movimiento a velocidades bajas (comparadas con la de la luz) vale aproximadamente

\mathbf{B}\simeq \frac{\mu_0}{4\pi}\,\frac{q\mathbf{v}'\times(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}

siendo \mathbf{r}' la posición instantánea de la carga. μ0 es una constante denominada permeabilidad del vacío, cuyo valor en el SI es \mu_0=4\pi\times 10^{-7}\,\mathrm{T}{\cdot}\mathrm{m}/\mathrm{A}.

El campo magnético creado por una distribuciónde corriente lineal puede calcularse integrando la expresión anterior. Para el caso de una corriente estacionario la aproximación se convierte en una igualdad y el campo magnético viene dado por la ley de Biot y Savart

\mathbf{B}(\mathbf{r})=\frac{\mu_0 I}{4\pi}\oint \frac{\mathrm{d}\mathbf{r}'\times(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}

Un caso particular importante es el del hilo rectilíneo infinito que produce un campo

\mathbf{B} = \frac{\mu_0I}{2\pi\rho}\mathbf{u}_{\varphi}

Este campo gira en torno al hilo, siendo circunferencias sus líneas de campo

También es importante el campo debido a una espira circular, que en los puntos de su eje vale

\mathbf{B} = \frac{\mu_0IR^2\mathbf{u}_{z}}{2(R^2+z^2)^{3/2}}

Este campo apunta en la dirección del eje de la espira, siendo máximo, con un valor μ0I / 2R en su centro.

De forma análoga al caso de la corriente lineal tenemos el campo creado por una distribución de corriente estacionaria volumétrica y por una superficial

\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\int \frac{\mathbf{J}\times(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'        \mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\int \frac{\mathbf{K}\times(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}S'

En estas expresiones las densidades de corriente son funciones de la posición, \mathbf{J}=\mathbf{J}(\mathbf{r}'), \mathbf{K}=\mathbf{K}(\mathbf{r}').



3 Fuentes del campo magnético. Ley de Ampère

4 El potencial vector magnético

5 Desarrollo multipolar magnético. Dipolo magnético

6 Problemas

Artículo completo: Problemas de campo magnético de corrientes estacionarias

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace