Leyes de conservación en mecánica analítica (CMR)
De Laplace
Línea 109: | Línea 109: | ||
;Término cuadrático: es una combinación de productos de las velocidades generalizadas | ;Término cuadrático: es una combinación de productos de las velocidades generalizadas | ||
- | <center><math>K_2=\frac{1}{2}\sum_{r,s}m_{rs}\dot{q}_r\ | + | <center><math>K_2=\frac{1}{2}\sum_{r,s}m_{rs}\dot{q}_r\dot{q}_s\qquad\qquad m_{rs}=\sum_i m_i \frac{\partial x_i}{\partial q_r}\,\frac{\partial x_i}{\partial q_s}</math></center> |
;Término lineal: es combinación de las velocidades generalizadas | ;Término lineal: es combinación de las velocidades generalizadas |
Revisión de 13:14 17 ene 2017
Contenido |
1 Introducción
Una constante de movimiento o integral primera es una función dependiente de las coordenadas, velocidades y posiblemente el tiempo, cuyo valor es el mismo en todo instante.
Si el sistema viene descrito por una serie de coordenadas generalizadas qk, una constante de movimiento cumpliría
Desarrollando aquí la derivada total queda la condición para que C sea una constante
A partir de las ecuaciones de Lagrange pueden obtenerse expresiones para las segundas derivadas que, sustituidas aquí deberían llevar a la anulación del primer término, si efectivamente C es una constante.
La búsqueda de constantes de movimiento es una tarea que puede ser complicada, ya que las posibles combinaciones de coordenadas generalizadas son infinitas. Aquí conideraremos solo los casos matemáticamente más simples.
2 Coordenadas cíclicas
Suponemos el caso más simple de coordenadas generalizadas independientes y ausencia de fuerzas no conservativas. En estas condiciones se satisfacen las ecuaciones de Lagrange
siendo la lagrangiana del sistema
Una coordenada q1 se dice cclica o ignorable si no aparece en la lagrangiana, es decir
y por tanto se anula derivada parcial
Esto implica, de acuerdo con las ecuaciones de Lagrange, que
A la derivada parcial
se la denomina el momento conjugado de la coordenada qj. Por tanto, si q1 es cíclica su momento conjugado p1 es una constante de movimiento de valor β1 dado por las condiciones iniciales.
Hay una estrecha relación entre las constantes de movimiento y las simetrías del sistema.
- En el caso de que q1 represente una coordenada cartesiana, su momento conjugado representa la cantidad de movimiento en dicha dirección. Por tanto, si el sistema tiene simetría traslacional, es decir, no cambia al realizar un desplzamiento rectilíneo, entonces se conserva una componente de la cantidad de movimiento.
- En el caso de que q1 represente una coordenada angular en torno a un eje, su momento conjugado representa el momento cinético asociado a giros en torno al eje. Por tanto, si el sistema tiene simetría de revolución, es decir, no cambia al realizar un desplzamiento en torno al eje, entonces se conserva una componente del momento cinético.
3 Función de Routh
Cuando se tiene una coordenada cíclica q1 se sabe que su momento conjugado p1 es una constante de valor β1. A partir de esta constante puede normalmente despejarse la velocidad generalizada . Puede plantearse entonces la reducción del sistema en una variable aprovechando que q1 no aparece en la lagrangiana y que puede ponerse en función del resto de coordenadas y constantes.
No obstante, el procedimiento a seguir no consiste en la simple sustitución en . Esto produciría ecuaciones incorrectas. Para la reducción del sistema deben seguirse los siguientes pasos:
- Identifíquese la coordenada cíclica q1 (puede haber más de una) que no aparece en la lagrangiana (¡ojo! sí que aparece )
- Calcúlese su momento conjugado . Este momento es una función de y del resto de coordenadas y velocidades, siendo una constante de movimiento.
- Hállese, si esposible, el valor concreto, β1 del momento generalizado a partir de las condiciones iniciales.
- Despéjese la velocidad generalizada de la expresión de p1
- Sustitúyase en la lagrangiana
- Calcúlese la denominada función de Routh, que equivale a la lagrangiana reducida
- Las nuevas ecuaciones de movimiento, ya con un grado de libertad menos, se calculan con esta función
- Si fuera necesario hallar q1 se calcula integrando respecto al tiempo la ecuación
Si hay más de una coordenada cíclica, la correspondiente función de Routh se halla como
4 Energía y función hamiltoniana
4.1 Función hamiltoniana
El tiempo t que aparece en la lagrangiana no es una coordenada generalizada, ya que su papel en las ecuaciones es diferente al resto. No obstante, de la misma manera que la ausencia de q1 implica una ley de conservación de su momento conjugado, la independencia temporal de la lagrangiana también implica una constante de movimiento.
En un sistema en el que todas las coordenadas son independientes y no hay presentes fuerzas no conservativas, cuando la lagrangiana es independiente del tiempo
la constante de movimiento no es la propia lagrangiana (es decir,de que se anule la derivada parcial no se deduce que se anule la derivada total), sino que la cantidad que se conserva es la denominada función hamiltoniana
Esta función coincide en muchos casos, pero no siempre, con la energía mecánica del sistema. Por ello, se dice que esta cantidad conservada es del tipo energía.
4.2 Demostración
4.3 Estructura de la lagrangiana
Podemos descomponer la lagrangiana en suma de varios términos, de manera que obtengamos una respuesta clara de cuál es el aspecto de la función h, cuya expresión anterior no hace evidente que se trata de algo relacionado con la energía.
Cuando se definen las coordenadas generalizadas a través de las relaciones
se llega a una relación entre velocidades
Si sustituimos esta expresión en la energía cinética
donde los tres sumandos vienen dados por
- Término cuadrático
- es una combinación de productos de las velocidades generalizadas
- Término lineal
- es combinación de las velocidades generalizadas
- Término independiente
- no depende de las velocidades generalizadas
En el caso de que en la definición de las coordenadas generalizadas no aparezca el tiempo los términos K1 y K0 se anulan y solo aparece K2
Cuando se hace esta descomposición puede demostrarse desarrollando y sustituyendo, que la función hamiltoniana es igual a
por lo cual:
- Si K0 se anula la función hamiltoniana coincide con la energía mecánica del sistema.
- Si la función hamiltoniana no coincide con la energía mecánica, pero se parece a ella.
Un caso típico en el que la hamiltoniana no coincide con la energía mecánica es aquél en que se emplea un sistema de referencia en rotación.