Entrar Página Discusión Historial Go to the site toolbox

Movimiento de una barra apoyada

De Laplace

(Diferencias entre revisiones)
(Planteamiento)
(Planteamiento)
Línea 54: Línea 54:
<center><math>I\alpha=I\ddot{\theta}=F_Ay_c-F_Bx_c\qquad\qquad I = \frac{MH^2}{12}</math></center>
<center><math>I\alpha=I\ddot{\theta}=F_Ay_c-F_Bx_c\qquad\qquad I = \frac{MH^2}{12}</math></center>
-
Tenemos entonces tres ecuaciones con cinco incógnitas
+
Tenemos entonces tres ecuaciones con cinco incógnitas (las dos componentes de la aceleración lineal, la aceleración angular y las dos fuerzas de reacción)
<center><math>\begin{array}{rcl}
<center><math>\begin{array}{rcl}
Línea 61: Línea 61:
I\ddot{\theta} & = & F_Ax_c-F_By_c
I\ddot{\theta} & = & F_Ax_c-F_By_c
\end{array}</math></center>
\end{array}</math></center>
 +
 +
Para completar estas dos ecuaciones añadimos las condiciones de vínculo, que relacionan las tres variables
 +
 +
<center><math>\begin{array}{rcl}
 +
x_c & = & \displaystyle\frac{H}{2}\mathrm{sen}(\theta) \\ && \\ y_c & = & \displaystyle\frac{H}{2}\mathrm{cos}(\theta)
 +
\end{array}</math></center>
 +
 +
Este sistema de cinco ecuaciones se puede resolver completamente y más adelante veremos cómo se hace. No obstante, ante de exponer esa solución, consideraremos un atajo basado en hacer uso de la conservación de la energía mecánica.
===Solución empleando la energía mecánica===
===Solución empleando la energía mecánica===

Revisión de 13:00 11 ene 2013

Contenido

1 Enunciado

En el mismo sistema del problema “Equilibrio de una barra apoyada”, considérese el caso en que no hay rozamiento ni con la pared ni con el suelo. Si la barra se encuentra inicialmente en la posición vertical y por una pequeña perturbación comienza a deslizarse resbalando por el suelo y la pared:

  1. ¿Cuál es la ecuación de movimiento para el ángulo θ que forma la barra con la pared?
  2. ¿Cuánto valen las fuerzas que ejercen la pared y el suelo para cada posición de la barra?
  3. ¿Llega a separarse en algún momento de la pared? ¿Para qué ángulo?

2 Ecuación de movimiento

2.1 Planteamiento

La barra, al descender, va variando el ángulo que forma con la pared, que va aumentando progresivamente. El movimiento de la barra está gobernado por tres fuerzas:

  • Su peso, aplicado en su centro de masas, que se halla en el centro de la barra, y que apunta en la dirección vertical hacia abajo.
M\vec{g}=-Mg\vec{\jmath}
  • La fuerza de reacción del suelo, aplicada en el punto A, donde se apoya la barra. Al no haber rozamiento, esta fuerza es puramente perpendicular a la superficie
\vec{F}_A=F_A\vec{\jmath}
  • La fuerza de reacción de la pared, aplicada en el punto B, donde se apoya la barra. Puesto que aquí tampoco hay rozamiento, apunta en la dirección perpendicular, que ahora es horizontal
\vec{F}_B=F_B\vec{\imath}

La magnitud de estas dos fuerzas es desconocida, por lo que se trata de incógnitas adicionales del problema.

Por semejanza de triángulos, si la posición instantánea del centro de masas es

\vec{r}_C = x_c\vec{\imath}+y_C\vec{\jmath}

la de los puntos de contacto es

\vec{r}_A=2x_C\vec{\imath}\qquad\qquad \vec{r}_B = 2y_C\vec{\jmath}

A su vez, estas posiciones se relacionan con el ángulo θ por

\vec{r}_A=H\,\mathrm{sen}(\theta)\vec{\imath}\qquad\qquad \vec{r}_B=H\cos(\beta)\vec{\jmath}\qquad\qquad\vec{r}_C=\frac{H}{2}\left(\mathrm{sen}(\theta)\vec{\imath}+\cos(\theta)\vec{\jmath}\right)

Las ecuaciones que gobiernan el movimiento de la barra son:

Teorema de la cantidad de movimiento
La masa por la aceleración del centro de masas es igual a la resultante de todas las fuerzas externas aplicadas
M\vec{a}_C = M\vec{g}+\vec{F}_A+\vec{F}_B

Separando por componentes

Ma_{Cx} = M\ddot{x}_C = F_B\qquad\qquad Ma_{Cy}=M\ddot{y}_C = F_A -Mg
Teorema del momento cinético
La derivada del momento cinético respecto al centro de masas es igual al momento resultante respecto a este punto de las fuerzas externas aplicadas.
\frac{\mathrm{d}\vec{L}_C}{\mathrm{d}t}=\vec{M}_C = \sum_i \overrightarrow{CP}_i\times \vec{F}_i
En este caso, el peso no tiene momento, por estar aplicado en el propio CM y las dos fuerzas de reacciones producen giros en sentidos opuestos. Tanto el momento cinético como los momentos de las fuerzas van en la dirección de \vec{k} por lo que podemos escribir
I\alpha=I\ddot{\theta}=F_Ay_c-F_Bx_c\qquad\qquad I = \frac{MH^2}{12}

Tenemos entonces tres ecuaciones con cinco incógnitas (las dos componentes de la aceleración lineal, la aceleración angular y las dos fuerzas de reacción)

\begin{array}{rcl}
M\ddot{x}_C & = & F_B \\
M\ddot{y}_C & = & F_A-Mg \\
I\ddot{\theta} & = & F_Ax_c-F_By_c
\end{array}

Para completar estas dos ecuaciones añadimos las condiciones de vínculo, que relacionan las tres variables

\begin{array}{rcl}
x_c & = & \displaystyle\frac{H}{2}\mathrm{sen}(\theta) \\ && \\ y_c & = & \displaystyle\frac{H}{2}\mathrm{cos}(\theta)
\end{array}

Este sistema de cinco ecuaciones se puede resolver completamente y más adelante veremos cómo se hace. No obstante, ante de exponer esa solución, consideraremos un atajo basado en hacer uso de la conservación de la energía mecánica.

2.2 Solución empleando la energía mecánica

2.3 Solución sin usar la energía

3 Fuerzas de reacción

4 Separación de la pared

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace