Movimiento de una barra apoyada
De Laplace
(→Ecuación de movimiento) |
|||
Línea 45: | Línea 45: | ||
<center><math>Ma_{Cx} = M\ddot{x}_C = F_B\qquad\qquad Ma_{Cy}=M\ddot{y}_C = F_A -Mg</math></center> | <center><math>Ma_{Cx} = M\ddot{x}_C = F_B\qquad\qquad Ma_{Cy}=M\ddot{y}_C = F_A -Mg</math></center> | ||
+ | |||
+ | ;Teorema del momento cinético: La derivada del momento cinético respecto al centro de masas es igual al momento resultante respecto a este punto de las fuerzas externas aplicadas. | ||
+ | |||
+ | <center><math>\frac{\mathrm{d}\vec{L}_C}{\mathrm{d}t}=\vec{M}_C = \sum_i \overrightarrow{CP}_i\times \vec{F}_i</math></center> | ||
+ | |||
+ | :En este caso, el peso no tiene momento, por estar aplicado en el propio CM y las dos fuerzas de reacciones producen giros en sentidos opuestos. Tanto el momento cinético como los momentos de las fuerzas van en la dirección de <math>\vec{k}</math> por lo que podemos escribir | ||
+ | |||
+ | I\alpha=I\ddot{\theta} | ||
===Solución empleando la energía mecánica=== | ===Solución empleando la energía mecánica=== | ||
===Solución sin usar la energía=== | ===Solución sin usar la energía=== |
Revisión de 12:17 11 ene 2013
Contenido |
1 Enunciado
En el mismo sistema del problema “Equilibrio de una barra apoyada”, considérese el caso en que no hay rozamiento ni con la pared ni con el suelo. Si la barra se encuentra inicialmente en la posición vertical y por una pequeña perturbación comienza a deslizarse resbalando por el suelo y la pared:
- ¿Cuál es la ecuación de movimiento para el ángulo θ que forma la barra con la pared?
- ¿Cuánto valen las fuerzas que ejercen la pared y el suelo para cada posición de la barra?
- ¿Llega a separarse en algún momento de la pared? ¿Para qué ángulo?
2 Ecuación de movimiento
2.1 Planteamiento
La barra, al descender, va variando el ángulo que forma con la pared, que va aumentando progresivamente. El movimiento de la barra está gobernado por tres fuerzas:
- Su peso, aplicado en su centro de masas, que se halla en el centro de la barra, y que apunta en la dirección vertical hacia abajo.
- La fuerza de reacción del suelo, aplicada en el punto A, donde se apoya la barra. Al no haber rozamiento, esta fuerza es puramente perpendicular a la superficie
- La fuerza de reacción de la pared, aplicada en el punto B, donde se apoya la barra. Puesto que aquí tampoco hay rozamiento, apunta en la dirección perpendicular, que ahora es horizontal
La magnitud de estas dos fuerzas es desconocida, por lo que se trata de incógnitas adicionales del problema.
Por semejanza de triángulos, si la posición instantánea del centro de masas es
la de los puntos de contacto es
A su vez, estas posiciones se relacionan con el ángulo θ por
Las ecuaciones que gobiernan el movimiento de la barra son:
- Teorema de la cantidad de movimiento
- La masa por la aceleración del centro de masas es igual a la resultante de todas las fuerzas externas aplicadas
Separando por componentes
- Teorema del momento cinético
- La derivada del momento cinético respecto al centro de masas es igual al momento resultante respecto a este punto de las fuerzas externas aplicadas.
- En este caso, el peso no tiene momento, por estar aplicado en el propio CM y las dos fuerzas de reacciones producen giros en sentidos opuestos. Tanto el momento cinético como los momentos de las fuerzas van en la dirección de por lo que podemos escribir
I\alpha=I\ddot{\theta}