Entrar Página Discusión Historial Go to the site toolbox

Problemas de fundamentos matemáticos

De Laplace

(Diferencias entre revisiones)
(Trazado de superficies equiescalares)
Línea 22: Línea 22:
# <math>\phi=\mathbf{A}{\cdot}\mathbf{r}+r^2\,</math>
# <math>\phi=\mathbf{A}{\cdot}\mathbf{r}+r^2\,</math>
# <math>\phi= r^2/(\mathbf{A}{\cdot}\mathbf{r})</math>
# <math>\phi= r^2/(\mathbf{A}{\cdot}\mathbf{r})</math>
 +
# <math>\phi = x^2 + y^2</math>
 +
# <math>\phi = \arctan\left(\displaystyle\frac{\sqrt{x^2+y^2}}{z}\right)</math>
 +
# <math>\phi= \frac{x}{\sqrt{x^2+y^2}}</math>
donde <math>\mathbf{A}</math> es un vector constante y <math>\mathbf{r}</math> es el vector de posición.
donde <math>\mathbf{A}</math> es un vector constante y <math>\mathbf{r}</math> es el vector de posición.
[[Categoría:Problemas de fundamentos matemáticos]]
[[Categoría:Problemas de fundamentos matemáticos]]

Revisión de 08:42 23 sep 2008

1 Campos escalares en diferentes sistemas

Exprese los siguientes campos escalares en coordenadas cartesianas, cilíndricas y esféricas

  1. \phi = (x^2+y^2+z^2)/2\,
  2. \phi = (2z^2-x^2-y^2)/2\,
  3. \phi = (z\cos\varphi)/\rho
  4. \phi = \cot\theta - \tan\theta\,

2 Campos vectoriales en diferentes sistemas

Exprese los siguientes campos vectoriales en coordenadas cartesianas, cilíndricas y esféricas:

  1. \mathbf{A} = \mathbf{r}\,
  2. \mathbf{B} = -\dfrac{y}{x^2+y^2}\mathbf{u}_{x}+\dfrac{x}{x^2+y^2}\mathbf{u}_{y}
  3. \mathbf{C} = 2\rho z\mathbf{u}_{\rho}-(\rho^2-z^2)\mathbf{u}_{z}
  4. \mathbf{D}=r\tan\theta\,\mathbf{u}_{\theta}

3 Trazado de superficies equiescalares

Describa las superficies equipotenciales de los siguientes campos escalares

  1. \phi=\mathbf{A}{\cdot}\mathbf{r}\,
  2. \phi=r^2\,
  3. \phi=\mathbf{A}{\cdot}\mathbf{r}+r^2\,
  4. \phi= r^2/(\mathbf{A}{\cdot}\mathbf{r})
  5. φ = x2 + y2
  6. \phi = \arctan\left(\displaystyle\frac{\sqrt{x^2+y^2}}{z}\right)
  7. \phi= \frac{x}{\sqrt{x^2+y^2}}

donde \mathbf{A} es un vector constante y \mathbf{r} es el vector de posición.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace