Entrar Página Discusión Historial Go to the site toolbox

Calor y calorimetría

De Laplace

(Diferencias entre revisiones)
(Unidades y signos)
Línea 34: Línea 34:
<center><math>1\,\mathrm{cal} = 4.184\,\mathrm{J}</math></center>
<center><math>1\,\mathrm{cal} = 4.184\,\mathrm{J}</math></center>
-
Sin embargo, debido a la existencia de diferentes definiciones de caloría, es preferible no usarla en absoluto.
+
Sin embargo, debido a la existencia de diferentes definiciones de caloría, es preferible no usarla en absoluto. También se usa en medicina, biología y dietética la &ldquo;caloría grande&rdquo; (Cal), que en realidad es una kilocaloría ( = 4184&thinsp;J).
-
 
+
-
También se usa en medicina, biología y dietética la &ldquo;caloría grande&rdquo; (Cal), que en realidad es una kilocaloría ( = 4184&thinsp;J).
+
En máquinas térmicas y refrigeradores se usa una unidad británica, la BTU, equivalente a 1055.056&thinsp;J.
En máquinas térmicas y refrigeradores se usa una unidad británica, la BTU, equivalente a 1055.056&thinsp;J.
 +
Como criterio para asignar signos al calor se sigue el principio de que:
 +
 +
[[Archivo:criterio-signos-calor.png|right]]
 +
 +
* Si el calor entra en el sistema se considera positivo.
 +
* Si el calor sale del sistema, es negativo.
 +
 +
Alternativamente, si presuponemos un sentido en el que está fluyendo el calor (calor que entra desde un foco a alta temperatura, o es desechado al ambiente frío), podemos definir
 +
 +
[[Archivo:Qin-Qout.png|right]]
 +
 +
* <math>Q_\mathrm{in}</math> para el calor que entra en el sistema
 +
* <math>Q_\mathrm{out}</math> para el calor que sale del sistema
 +
 +
siendo el calor neto intercambiado
 +
 +
<center><math>Q=Q_\mathrm{in}-Q_\mathrm{out}</math></center>
 +
 +
Tanto <math>Q_\mathrm{in}</math> como <math>Q_\mathrm{out}</math> pueden resultar negativos. Ello significa que el calor va en el sentido contrario al que habíamos supuesto.
==Calor e incremento de temperatura==
==Calor e incremento de temperatura==

Revisión de 10:14 8 mar 2012

Contenido

1 Definición

Sección 2-3 de Çengel & Boles

Una posible definición de calor en termodinámica es la siguiente:

El calor es la transferencia de energía a través de la frontera de un sistema debida a una diferencia de temperaturas

De esta definición, cabe destacar varios aspectos que se detallan en las secciones siguientes y en otros artículos:

  • El calor, como el trabajo es una transferencia de energía, un paso de energía de un sitio a otro, no algo que se tiene o se almacena. La frase “hace mucho calor” no es correcta en termodinámica.
  • El calor, como el trabajo, habla de lo que pasa en la frontera del sistema, no en su interior. Se debe a la interacción del sistema con su entorno.
  • El calor, a diferencia del trabajo, está asociado a la diferencia de temperatura, que es una medida de la agitación de los átomos y moléculas. Por tanto, se debe a la transferencia de energía a través de fenómenos microscópicos (el trabajo se refiere a los macroscópicos).

2 Concepto de calor

A diferencia del trabajo, el calor carece de analogía en mecánica, sino que es un concepto nuevo.

La experiencia nos dice que si colocamos un sistema en un cierto ambiente, el sistema evoluciona. Si colocamos un bloque de hielo al sol, sabemos que se funde. Si ponemos un termómetro de mercurio en la axila de una persona febril, el mercurio se dilata, y si es uno digital, se produce una corriente eléctrica en su interior.

Todos estos cambios se producen sin que haya trabajo asociado, simplemente por contacto. Deducimos entonces que “algo” ha pasado del entorno al sistema y a ese algo lo denominamos “calor”.

Los efectos del calor son varios:

  • Cambio en la temperatura del sistema
  • Cambio de fase del sistema
  • Realización de trabajo

la realización de trabajo como consecuencia de la transferencia de calor se explica al estudiar el primer principio de la termodinámica y el funcionamiento de las máquinas térmicas. En este artículo describiremos los dos primeros efectos.

3 Unidades y signos

El calor es una transferencia de energía y se mide en las mismas unidades que ésta. En el SI, la unidad del calor es el julio (J).

Por razones históricas, se usa también la caloría (cal), definida hoy día como

1\,\mathrm{cal} = 4.184\,\mathrm{J}

Sin embargo, debido a la existencia de diferentes definiciones de caloría, es preferible no usarla en absoluto. También se usa en medicina, biología y dietética la “caloría grande” (Cal), que en realidad es una kilocaloría ( = 4184 J).

En máquinas térmicas y refrigeradores se usa una unidad británica, la BTU, equivalente a 1055.056 J.

Como criterio para asignar signos al calor se sigue el principio de que:

  • Si el calor entra en el sistema se considera positivo.
  • Si el calor sale del sistema, es negativo.

Alternativamente, si presuponemos un sentido en el que está fluyendo el calor (calor que entra desde un foco a alta temperatura, o es desechado al ambiente frío), podemos definir

  • Qin para el calor que entra en el sistema
  • Qout para el calor que sale del sistema

siendo el calor neto intercambiado

Q = QinQout

Tanto Qin como Qout pueden resultar negativos. Ello significa que el calor va en el sentido contrario al que habíamos supuesto.

4 Calor e incremento de temperatura

(Sección 4-3 de Çengel & Boles, "Calores específicos")

El primer efecto de la transferencia de calor a un sistema es el incremento de su temperatura. Si la cantidad de calor transferida es pequeña, la variación de temperatura es proporcional a ella, lo que se expresa matemáticamente

\delta Q = C\,\mathrm{d}T



4.1 Calor específico

Para el caso de un gas: sección 4-4.

5 Entalpías de fusión y ebullición

Vienen descritas en el capítulo 3 de Çengel &Boles, junto con todas las propiedades del agua, aunque en mucha mayor extensión de la que se ha impartido en clase.

6 Transferencia de calor

Apéndice del tema 2 de Çengel & Boles (Temas de especial interés)

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace