Entrar Página Discusión Historial Go to the site toolbox

Tabla de cálculo vectorial

De Laplace

(Diferencias entre revisiones)
(En forma diferencial)
(En esféricas)
 
(50 ediciones intermedias no se muestran.)
Línea 32: Línea 32:
=====En forma integral=====
=====En forma integral=====
:<math>\oint_{\partial\tau}(\phi\nabla\psi-\psi\nabla\phi)\cdot\mathrm{d}\mathbf{S}=\int_\tau\left(\phi\nabla^2\psi-\psi\nabla^2\phi\right)\mathrm{d}\tau</math>
:<math>\oint_{\partial\tau}(\phi\nabla\psi-\psi\nabla\phi)\cdot\mathrm{d}\mathbf{S}=\int_\tau\left(\phi\nabla^2\psi-\psi\nabla^2\phi\right)\mathrm{d}\tau</math>
 +
 +
==Relación entre los sistemas de coordenadas==
 +
===De cartesianas a otros sistemas===
 +
 +
:<math>\begin{array}{ccccc}
 +
x & = & \rho\cos\varphi & =& r\,\operatorname{sen}\,\theta\cos\varphi \\&&&&\\
 +
y &=&\rho\,\operatorname{sen}\,\varphi & = &  r\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\\&&&&\\
 +
z &=& z &=&  r\cos\theta\end{array}</math>
 +
 +
===De cilíndricas a otros sistemas===
 +
 +
:<math>\begin{array}{ccccc}\sqrt{x^2+y^2} &=&  \rho &=&  r\,\operatorname{sen}\,\theta \\ &&&& \\
 +
\operatorname{arctg}\displaystyle\frac{y}{x}  &=& \varphi &=&  \varphi \\&&&&\\
 +
z &=&  z&=&  r\cos\theta\end{array}</math>
 +
 +
===De esféricas a otros sistemas===
 +
 +
:<math>\begin{array}{ccccc}\sqrt{x^2+y^2+z^2}&= & \sqrt{\rho^2+z^2}&=&  r \\&&&&\\
 +
\operatorname{arctg}\displaystyle\frac{\sqrt{x^2+y^2}}{z} & = &
 +
\operatorname{arctg}\displaystyle\frac{\rho}{z}&=& \theta \\&&&&\\
 +
\operatorname{arctg}\displaystyle\frac{y}{x}& =& \varphi &=&  \varphi\end{array}</math>
 +
 +
==Vector de posición==
 +
===En cartesianas===
 +
<math>\mathbf{r}=x\mathbf{u}_{x}+y\,\mathbf{u}_{y}+z\mathbf{u}_{z}</math>
 +
===En cilíndricas===
 +
<math>\mathbf{r}=\rho\,\mathbf{u}_{\rho}+z\mathbf{u}_{z}</math>
 +
===En esféricas===
 +
<math>\mathbf{r}=r\mathbf{u}_{r}</math>
 +
 +
==[[Bases vectoriales|Factores de escala]]==
 +
===Definición===
 +
:<math>h_i=\left|\frac{\partial \mathbf{r}}{\partial q_i}\right|</math>
 +
 +
===Cartesianas===
 +
:<math>h_x=1\,</math>{{qquad}}<math>h_y=1\,</math>{{qquad}}<math>h_z=1\,</math>
 +
 +
===Cilíndricas===
 +
:<math>h_\rho=1\,</math>{{qquad}}<math>h_\varphi=\rho</math>{{qquad}}<math>h_z=1\,</math>
 +
 +
===Esféricas===
 +
:<math>h_r=1\,</math>{{qquad}}<math>h_\theta=r\,</math>{{qquad}}<math>h_\varphi=r\,\operatorname{sen}\,\theta</math>
 +
 +
==Relación entre bases vectoriales==
 +
===De cartesianas a otro sistema===
 +
:<math>\begin{array}{ccccc}
 +
\mathbf{u}_{x} & = & \cos\varphi\mathbf{u}_{\rho}-\,\operatorname{sen}\,\varphi\mathbf{u}_{\varphi} & = &
 +
\,\operatorname{sen}\,\theta\cos\varphi\mathbf{u}_{r}+\cos\theta\cos\varphi\mathbf{u}_{\theta}-\,\operatorname{sen}\,\varphi\mathbf{u}_{\varphi} \\
 +
\mathbf{u}_{y} & = & \,\operatorname{sen}\,\varphi\mathbf{u}_{\rho}+\cos\varphi\mathbf{u}_{\varphi} & = &
 +
\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{r}+\cos\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{\theta}+\cos\varphi\mathbf{u}_{\varphi} \\
 +
\mathbf{u}_{z} & = & \mathbf{u}_{z} & = & \cos\theta\mathbf{u}_{r}-\,\operatorname{sen}\,\theta\mathbf{u}_{\theta}
 +
\end{array}</math>
 +
 +
===De cilíndricas a otro sistema===
 +
:<math>\begin{array}{ccccc}
 +
\cos\varphi\mathbf{u}_{x}+\,\operatorname{sen}\,\varphi\mathbf{u}_{y} & = & \mathbf{u}_{\rho} & = &
 +
\,\operatorname{sen}\,\theta\mathbf{u}_{r}+\cos\theta\mathbf{u}_{\theta} \\
 +
-\,\operatorname{sen}\,\varphi\mathbf{u}_{x}+\cos\varphi\mathbf{u}_{y}
 +
& = &
 +
\mathbf{u}_{\varphi}& = &
 +
\mathbf{u}_{\varphi} \\
 +
\mathbf{u}_{z} & = & \mathbf{u}_{z} & = & \cos\theta\mathbf{u}_{r}-\,\operatorname{sen}\,\theta\mathbf{u}_{\theta}\\
 +
\end{array}</math>
 +
 +
===De esféricas a otro sistema===
 +
:<math>\begin{array}{ccccc}
 +
\,\operatorname{sen}\,\theta\cos\varphi\mathbf{u}_{x}+\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{y}+\cos\theta\mathbf{u}_{z} & = & \,\operatorname{sen}\,\theta\mathbf{u}_{\rho}+\cos\theta\mathbf{u}_{z} & = &
 +
\mathbf{u}_{r} \\
 +
\cos\theta\cos\varphi\mathbf{u}_{x}+\cos\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{y}-\,\operatorname{sen}\,\theta\mathbf{u}_{z} & = &\cos\theta\mathbf{u}_{\rho}-\,\operatorname{sen}\,\theta\mathbf{u}_{z} & = &
 +
\mathbf{u}_{\theta} \\
 +
-\,\operatorname{sen}\,\varphi\mathbf{u}_{x}+\cos\varphi\mathbf{u}_{y}
 +
& = &
 +
\mathbf{u}_{\varphi}& = &
 +
\mathbf{u}_{\varphi} \\
 +
\end{array}</math>
 +
 +
==Diferenciales==
 +
===De camino===
 +
====Para coordenadas ortogonales====
 +
:<math>\mathrm{d}\mathbf{r}=h_1\,\mathrm{d}q_1\,\mathbf{u}_{1}+h_2\,\mathrm{d}q_2\,\mathbf{u}_{2}+h_3\,\mathrm{d}q_3\,\mathbf{u}_{3}</math>
 +
 +
====En cartesianas====
 +
:<math>\mathrm{d}\mathbf{r}=\mathrm{d}x\mathbf{u}_{x}+\mathrm{d}y\,\mathbf{u}_{y}+\mathrm{d}z\mathbf{u}_{z}</math>
 +
====En cilíndricas====
 +
:<math>\mathrm{d}\mathbf{r}=\mathrm{d}\rho\,\mathbf{u}_{\rho}+\rho\,\mathrm{d}\varphi\,\mathbf{u}_{\varphi}+\mathrm{d}z\mathbf{u}_{z}</math>
 +
====En esféricas====
 +
:<math>\mathrm{d}\mathbf{r}=\mathrm{d}r\mathbf{u}_{r}+r\,\mathrm{d}\theta\,\mathbf{u}_{\theta}+r\,\operatorname{sen}\,\theta\,\mathrm{d}\varphi\,\mathbf{u}_{\varphi}</math>
 +
 +
===De superficie===
 +
====Para coordenadas ortogonales====
 +
:<math>\left.\mathrm{d}\mathbf{S}\right|_{q_3=\mathrm{cte}}= h_1 h_2 \mathrm{d}q_1 \mathrm{d}q_2 \mathbf{u}_{3}</math>
 +
====En cartesianas====
 +
:<math>\mathrm{d}\mathbf{S}_x=\mathrm{d}y\,\mathrm{d}z\,\mathbf{u}_{x}</math>
 +
:<math>\mathrm{d}\mathbf{S}_y=\mathrm{d}x\,\mathrm{d}z\,\mathbf{u}_{y}</math>
 +
:<math>\mathrm{d}\mathbf{S}_z=\mathrm{d}x\,\mathrm{d}y\,\mathbf{u}_{z}</math>
 +
 +
====En cilíndricas====
 +
:<math>\mathrm{d}\mathbf{S}_\rho=\rho\,\mathrm{d}\varphi\,\mathrm{d}z\,\mathbf{u}_{\rho}</math>
 +
:<math>\mathrm{d}\mathbf{S}_\varphi=\mathrm{d}\rho\,\mathrm{d}z\,\mathbf{u}_{\varphi}</math>
 +
:<math>\mathrm{d}\mathbf{S}_z=\rho\,\mathrm{d}\rho\,\mathrm{d}\varphi\,\mathbf{u}_{z}</math>
 +
 +
====En esféricas====
 +
:<math>\mathrm{d}\mathbf{S}_r=r^2\,\,\operatorname{sen}\,\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi\,\mathbf{u}_{r}</math>
 +
:<math>\mathrm{d}\mathbf{S}_\theta=r\,\,\operatorname{sen}\,\theta\,\mathrm{d}r\,\mathrm{d}\varphi\,\mathbf{u}_{\theta}</math>
 +
:<math>\mathrm{d}\mathbf{S}_\varphi=r\,\,\mathrm{d}r\,\mathrm{d}\theta\,\mathbf{u}_{\varphi}</math>
 +
 +
===De volumen===
 +
====Para coordenadas ortogonales====
 +
====En cartesianas====
 +
====En cilíndricas====
 +
====En esféricas====

última version al 11:52 25 jul 2008

Contenido

1 Álgebra del operador nabla

1.1 Aplicación sobre productos

1.1.1 De dos campos escalares

\nabla(\phi\psi)  =  \psi \,\nabla\phi+\phi\,\nabla\psi

1.1.2 De un campo escalar por uno vectorial

\nabla{\cdot}(\phi\mathbf{A})  = \nabla\phi {\cdot}\mathbf{A}+\phi\,\nabla{\cdot}\mathbf{A}
\nabla\times(\phi\mathbf{A})  = \nabla\phi\times\mathbf{A}+\phi\,\nabla\times\mathbf{A}

1.1.3 De dos campos vectoriales

\nabla{\cdot}(\mathbf{A}\times\mathbf{B})  = 
(\nabla\times\mathbf{A}){\cdot}\mathbf{B}-(\nabla\times\mathbf{B}){\cdot}\mathbf{A}
\nabla\times(\mathbf{A}\times\mathbf{B})  =  \mathbf{A}(\nabla{\cdot}\mathbf{B})+
(\mathbf{B}{\cdot}\nabla)\mathbf{A}-\mathbf{B}(\nabla{\cdot}\mathbf{A})-(\mathbf{A}{\cdot}\nabla)\mathbf{B}
\nabla(\mathbf{A}{\cdot}\mathbf{B})  =  \mathbf{A}\times(\nabla\times\mathbf{B})+(\mathbf{A}{\cdot}\nabla)\mathbf{B}+\mathbf{B}\times(\nabla\times\mathbf{A})+(\mathbf{B}{\cdot}\nabla)\mathbf{A}

1.2 Operadores de segundo orden

\nabla{\cdot}(\nabla\phi) = \nabla^2\phi
\nabla\times(\nabla\phi)  =  \mathbf{0}
\nabla{\cdot}(\nabla\times\mathbf{A})  =  0
\nabla\times(\nabla\times\mathbf{A})  = \nabla(\nabla{\cdot}\mathbf{A})-\nabla^2\mathbf{A}

1.3 Identidades de Green

1.3.1 Primera

1.3.1.1 En forma diferencial
\nabla{\cdot}(\phi\nabla\psi)=\nabla\phi{\cdot}\nabla\psi+\phi\nabla^2\psi
1.3.1.2 En forma integral
\oint_{\partial\tau}\phi\nabla\psi\cdot\mathrm{d}\mathbf{S}=\int_\tau\left(\nabla\phi{\cdot}\nabla\psi+\phi\nabla^2\psi\right)\mathrm{d}\tau

1.3.2 Segunda

1.3.2.1 En forma diferencial
\nabla{\cdot}(\phi\nabla\psi-\psi\nabla\phi)=\phi\nabla^2\psi-\psi\nabla^2\phi
1.3.2.2 En forma integral
\oint_{\partial\tau}(\phi\nabla\psi-\psi\nabla\phi)\cdot\mathrm{d}\mathbf{S}=\int_\tau\left(\phi\nabla^2\psi-\psi\nabla^2\phi\right)\mathrm{d}\tau

2 Relación entre los sistemas de coordenadas

2.1 De cartesianas a otros sistemas

\begin{array}{ccccc}
x & = & \rho\cos\varphi & =& r\,\operatorname{sen}\,\theta\cos\varphi \\&&&&\\
y &=&\rho\,\operatorname{sen}\,\varphi & = &  r\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\\&&&&\\
z &=& z &=&  r\cos\theta\end{array}

2.2 De cilíndricas a otros sistemas

\begin{array}{ccccc}\sqrt{x^2+y^2} &=&  \rho &=&  r\,\operatorname{sen}\,\theta \\ &&&& \\
\operatorname{arctg}\displaystyle\frac{y}{x}  &=& \varphi &=&   \varphi \\&&&&\\
z &=&   z&=&   r\cos\theta\end{array}

2.3 De esféricas a otros sistemas

\begin{array}{ccccc}\sqrt{x^2+y^2+z^2}&= & \sqrt{\rho^2+z^2}&=&  r \\&&&&\\
\operatorname{arctg}\displaystyle\frac{\sqrt{x^2+y^2}}{z} & = & 
\operatorname{arctg}\displaystyle\frac{\rho}{z}&=& \theta \\&&&&\\
\operatorname{arctg}\displaystyle\frac{y}{x}& =& \varphi &=&  \varphi\end{array}

3 Vector de posición

3.1 En cartesianas

\mathbf{r}=x\mathbf{u}_{x}+y\,\mathbf{u}_{y}+z\mathbf{u}_{z}

3.2 En cilíndricas

\mathbf{r}=\rho\,\mathbf{u}_{\rho}+z\mathbf{u}_{z}

3.3 En esféricas

\mathbf{r}=r\mathbf{u}_{r}

4 Factores de escala

4.1 Definición

h_i=\left|\frac{\partial \mathbf{r}}{\partial q_i}\right|

4.2 Cartesianas

h_x=1\,    h_y=1\,    h_z=1\,

4.3 Cilíndricas

h_\rho=1\,    h_\varphi=\rho    h_z=1\,

4.4 Esféricas

h_r=1\,    h_\theta=r\,    h_\varphi=r\,\operatorname{sen}\,\theta

5 Relación entre bases vectoriales

5.1 De cartesianas a otro sistema

\begin{array}{ccccc}
\mathbf{u}_{x} & = & \cos\varphi\mathbf{u}_{\rho}-\,\operatorname{sen}\,\varphi\mathbf{u}_{\varphi} & = &
\,\operatorname{sen}\,\theta\cos\varphi\mathbf{u}_{r}+\cos\theta\cos\varphi\mathbf{u}_{\theta}-\,\operatorname{sen}\,\varphi\mathbf{u}_{\varphi} \\
\mathbf{u}_{y} & = & \,\operatorname{sen}\,\varphi\mathbf{u}_{\rho}+\cos\varphi\mathbf{u}_{\varphi} & = &
\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{r}+\cos\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{\theta}+\cos\varphi\mathbf{u}_{\varphi} \\
\mathbf{u}_{z} & = & \mathbf{u}_{z} & = & \cos\theta\mathbf{u}_{r}-\,\operatorname{sen}\,\theta\mathbf{u}_{\theta}
\end{array}

5.2 De cilíndricas a otro sistema

\begin{array}{ccccc}
\cos\varphi\mathbf{u}_{x}+\,\operatorname{sen}\,\varphi\mathbf{u}_{y} & = & \mathbf{u}_{\rho} & = &
\,\operatorname{sen}\,\theta\mathbf{u}_{r}+\cos\theta\mathbf{u}_{\theta} \\
-\,\operatorname{sen}\,\varphi\mathbf{u}_{x}+\cos\varphi\mathbf{u}_{y}
& = &
\mathbf{u}_{\varphi}& = &
\mathbf{u}_{\varphi} \\
\mathbf{u}_{z} & = & \mathbf{u}_{z} & = & \cos\theta\mathbf{u}_{r}-\,\operatorname{sen}\,\theta\mathbf{u}_{\theta}\\
\end{array}

5.3 De esféricas a otro sistema

\begin{array}{ccccc}
\,\operatorname{sen}\,\theta\cos\varphi\mathbf{u}_{x}+\,\operatorname{sen}\,\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{y}+\cos\theta\mathbf{u}_{z} & = & \,\operatorname{sen}\,\theta\mathbf{u}_{\rho}+\cos\theta\mathbf{u}_{z} & = &
\mathbf{u}_{r} \\
\cos\theta\cos\varphi\mathbf{u}_{x}+\cos\theta\,\operatorname{sen}\,\varphi\mathbf{u}_{y}-\,\operatorname{sen}\,\theta\mathbf{u}_{z} & = &\cos\theta\mathbf{u}_{\rho}-\,\operatorname{sen}\,\theta\mathbf{u}_{z} & = &
\mathbf{u}_{\theta} \\
-\,\operatorname{sen}\,\varphi\mathbf{u}_{x}+\cos\varphi\mathbf{u}_{y}
& = &
\mathbf{u}_{\varphi}& = &
\mathbf{u}_{\varphi} \\
\end{array}

6 Diferenciales

6.1 De camino

6.1.1 Para coordenadas ortogonales

\mathrm{d}\mathbf{r}=h_1\,\mathrm{d}q_1\,\mathbf{u}_{1}+h_2\,\mathrm{d}q_2\,\mathbf{u}_{2}+h_3\,\mathrm{d}q_3\,\mathbf{u}_{3}

6.1.2 En cartesianas

\mathrm{d}\mathbf{r}=\mathrm{d}x\mathbf{u}_{x}+\mathrm{d}y\,\mathbf{u}_{y}+\mathrm{d}z\mathbf{u}_{z}

6.1.3 En cilíndricas

\mathrm{d}\mathbf{r}=\mathrm{d}\rho\,\mathbf{u}_{\rho}+\rho\,\mathrm{d}\varphi\,\mathbf{u}_{\varphi}+\mathrm{d}z\mathbf{u}_{z}

6.1.4 En esféricas

\mathrm{d}\mathbf{r}=\mathrm{d}r\mathbf{u}_{r}+r\,\mathrm{d}\theta\,\mathbf{u}_{\theta}+r\,\operatorname{sen}\,\theta\,\mathrm{d}\varphi\,\mathbf{u}_{\varphi}

6.2 De superficie

6.2.1 Para coordenadas ortogonales

\left.\mathrm{d}\mathbf{S}\right|_{q_3=\mathrm{cte}}= h_1 h_2 \mathrm{d}q_1 \mathrm{d}q_2 \mathbf{u}_{3}

6.2.2 En cartesianas

\mathrm{d}\mathbf{S}_x=\mathrm{d}y\,\mathrm{d}z\,\mathbf{u}_{x}
\mathrm{d}\mathbf{S}_y=\mathrm{d}x\,\mathrm{d}z\,\mathbf{u}_{y}
\mathrm{d}\mathbf{S}_z=\mathrm{d}x\,\mathrm{d}y\,\mathbf{u}_{z}

6.2.3 En cilíndricas

\mathrm{d}\mathbf{S}_\rho=\rho\,\mathrm{d}\varphi\,\mathrm{d}z\,\mathbf{u}_{\rho}
\mathrm{d}\mathbf{S}_\varphi=\mathrm{d}\rho\,\mathrm{d}z\,\mathbf{u}_{\varphi}
\mathrm{d}\mathbf{S}_z=\rho\,\mathrm{d}\rho\,\mathrm{d}\varphi\,\mathbf{u}_{z}

6.2.4 En esféricas

\mathrm{d}\mathbf{S}_r=r^2\,\,\operatorname{sen}\,\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi\,\mathbf{u}_{r}
\mathrm{d}\mathbf{S}_\theta=r\,\,\operatorname{sen}\,\theta\,\mathrm{d}r\,\mathrm{d}\varphi\,\mathbf{u}_{\theta}
\mathrm{d}\mathbf{S}_\varphi=r\,\,\mathrm{d}r\,\mathrm{d}\theta\,\mathbf{u}_{\varphi}

6.3 De volumen

6.3.1 Para coordenadas ortogonales

6.3.2 En cartesianas

6.3.3 En cilíndricas

6.3.4 En esféricas

Herramientas:

TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 11:52, 25 jul 2008. - Esta página ha sido visitada 18.203 veces. - Aviso legal - Acerca de Laplace