Entrar Página Discusión Historial Go to the site toolbox

Ley de Lorentz

De Laplace

(Diferencias entre revisiones)
(Demostración)
(Fuerza sobre una corriente lineal)
Línea 122: Línea 122:
==Fuerza sobre una corriente lineal==
==Fuerza sobre una corriente lineal==
-
El caso importante de la fuerza sobre una corriente filiforme puede deducirse de la expresión para una distribución volumétrica. El resultado es que si tenemos una corriente I circulando a lo largo de una curva Γ (abierta o cerrada) la fuerza magnética sobre la corriente es<center>
+
El caso importante de la fuerza sobre una corriente filiforme puede deducirse de la expresión para una distribución volumétrica. El resultado es que si tenemos una corriente <math>I</math> circulando a lo largo de una curva <math>\Gamma</math> (abierta o cerrada) la fuerza magnética sobre la corriente es<center>
<math>\mathbf{F}_\mathrm{m}=I\int_\Gamma \mathrm{d}\mathbf{r}\times\mathbf{B}</math></center>
<math>\mathbf{F}_\mathrm{m}=I\int_\Gamma \mathrm{d}\mathbf{r}\times\mathbf{B}</math></center>

Revisión de 16:29 18 mar 2009

Contenido

1 Fuerza sobre cargas puntuales

1.1 Ley de Lorentz

Según se ve en el tema de Electrostática en el vacío, la fuerza eléctrica sobre una carga puntual en reposo viene dada por

\mathbf{F}=q\mathbf{E}(\mathbf{r})

Sin embargo, si dicha carga se encuentra en movimiento, la experiencia muestra que se ve sometida a una fuerza adicional. Esta fuerza, que llamaremos fuerza magnética, verifica que es:

  • Proporcional a la carga
  • Proporcional al módulo de su velocidad
  • Perpendicular a la velocidad

Con estas condiciones, la fuerza magnética debe ser de la forma

\mathbf{F}_m=q\mathbf{v}\times\mathbf{B}(\mathbf{r})

siendo \mathbf{B} un nuevo campo, conocido como campo magnético. La fuerza total sobre una carga puntual es entonces

\mathbf{F}=q\left(\mathbf{E}(\mathbf{r})\mathbf{v}\times\mathbf{B}(\mathbf{r})\right)

Esta expresión, que es válida en general, tanto para situaciones estáticas como dinámicas, se denomina Fuerza de Lorentz.

1.2 Unidades del campo magnético

De la expresión de la fuerza magnética resulta que, en el SI, \mathbf{B} se mide en

[B] = \frac{{[F]}}{{[q][v]}} = \frac{{\left( {1\,{\rm{N}}} \right)}}{{\left( {1{\rm{C}}} \right)\,\left( {1{\rm{m}}/{\rm{s}}} \right)}} = \frac{{1\,{\rm{N}}}}{{{\rm{A}}\cdot{\rm{m}}}} = 1\,{\rm{T}}

A esta unidad se la denomina Tesla, en honor del científico e ingeniero Nikola Tesla.

1.3 ¿Y los imanes?

El concepto de campo magnético suele asociarse sobre todo con los imanes. Sin embargo, las experiencias de Øersted de 1820 mostraron que: Las corrientes eléctricas producen fuerzas magnéticas sobre los imanes.

A partir de ahí, Ampère por un lado y Biot y Savart por otro, postularon la expresión simétrica:

Los imanes producen fuerzas magnéticas sobre las corrientes eléctricas

Y por tanto

Las corrientes eléctricas producen fuerzas magnéticas entre sí

Ampère postuló además que también las fuerzas magnéticas entre imanes son interacciones entre corrientes. Puesto que las corrientes eléctricas no son más que conjuntos de cargas en movimiento:

El magnetismo se reduce a la interacción entre cargas

1.4 La regla de la mano derecha

Es indispensable al estudiar el campo magnético: Si el índice apunta según v y el corazón según B, el pulgar indica la fuerza.

Imagen:reglamanoderecha.gif

2 Movimiento de una carga en un campo magnético

¿Cómo se conocen las propiedades de la fuerza magnética indicadas anteriormente? Una posibilidad es estudiando el movimiento de una carga en un campo uniforme.

Supongamos un campo magnético \mathbf{B} = B \mathbf{u}_z, y una carga q que penetra en el campo con velocidad inicial v0. Tenemos tres casos:

2.1 Velocidad inicial paralela

En este caso la fuerza inicial es nula

\left.m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right|_0 = \mathbf{F} = q\mathbf{v}_0\times\mathbf{B}=\mathbf{0}

La velocidad no cambia ni entonces ni más tarde, por lo que el movimiento es rectilíneo y uniforme paralelo a B

2.2 Velocidad inicial perpendicular

Como la fuerza es perpendicular a \mathbf{B}, se cumple que \mathbf{v}\perp\mathbf{B} en todo instante.

Escribiendo la 2ª ley de Newton en componentes intrínsecas

m\left(\mathbf{a}_t + \mathbf{a}_n\right) = q(\mathbf{v}\times\mathbf{B})\qquad \left(\perp\mathbf{v}\right)

La fuerza es puramente normal a \mathbf{v}, por lo que la aceleración tangencial es nula

a_t = \frac{\mathrm{d}\left|\mathbf{v}\right|}{\mathrm{d}t} = 0   \Rightarrow   \left|\mathbf{v}\right| = \left|\mathbf{v}_0\right| =\mathrm{cte}

y, al ser la celeridad constante

a_n = \frac{v_0^2}{R} = \frac{qv_0B}{m}   \Rightarrow   R = \frac{{m{v_0}}}{{qB}} = \mathrm{cte.}

Resultan una celeridad y un radio de curvatura constantes, por tanto el movimiento es circular y uniforme alrededor del campo magnético.

2.3 Velocidad inicial arbitraria

Descomponiendo el movimiento en los dos casos anteriores, resulta una superposición de un movimiento circular alrededor del campo, combinado con uno rectilíneo paralelo a éste.

El resultado es un movimiento helicoidal uniforme

3 Fuerza sobre una distribución de corriente

Normalmente las cargas eléctricas no están aisladas, sino agrupadas por millones formando una distribución de corriente. La fuerza neta sobre la distribución será la resultante de las fuerzas individuales

\mathbf{F}_\mathrm{m} = \sum_{q_i} q_i\left(\mathbf{v}_i\times\mathbf{B}(\mathbf{r}_i)\right)

Como en otras ocasiones, no resulta factible hallar la fuerza mediante el sumatorio, ya que para empezar desconocemos la posición y la velocidad de cada partícula, ni siquiera sabemos cuántas hay. Por ello, es necesario pasar a una descripción macroscópica. Supongamos que tenemos un volumen τ, en el interior del cual hay una distribución de corriente de volumen J. La fuerza neta sobre la distribución es

\mathbf{F}_\mathrm{m} = \int_\tau  \mathbf{J} \times \mathbf{B}\,\mathrm{d}\tau

El mismo razonamiento que para una distribución volumétrica se puede aplicar a una superficial, resultando la fuerza

\mathbf{F}_\mathrm{m} = \int_\tau  \mathbf{K} \times \mathbf{B}\,\mathrm{d}S

3.1 Demostración

En lugar de sumar las cargas en cualquier orden, dividimos el volumen en elementos Δτ, y sumamos primero dentro de cada elemento

\mathbf{F}_\mathrm{m}= \sum_{q_i} q_i\left(\mathbf{v}_i\times\mathbf{B}(\mathbf{r}_i)\right)=\sum_{\Delta\tau}\left(\sum_{q_i\in\Delta \tau}q_i\left(\mathbf{v}_i\times\mathbf{B}(\mathbf{r}_i)\right)\right)

Hacemos la aproximación de que, dentro de un elemento, todas las cargas ven el mismo campo promedio y se puede sacar como factor común

\mathbf{F}_\mathrm{m}= \sum_{\Delta\tau}\left(\sum_{q_i\in\Delta \tau}q_i\left(\mathbf{v}_i\times\mathbf{B}(\mathbf{r}_i)\right)\right)\simeq \sum_{\Delta\tau}\left(\sum_{q_i\in\Delta \tau}q_i\left(\mathbf{v}_i\right)\right)\times\mathbf{B}(\mathbf{r})

El sumatorio de las cargas por las velocidades equivale a la densidad de corriente por el elemento de volumen

\mathbf{F}_\mathrm{m}\simeq \sum_{\Delta\tau}\left(\sum_{q_i\in\Delta \tau}q_i\left(\mathbf{v}_i\right)\right)\times\mathbf{B}(\mathbf{r})=\sum_{\Delta\tau}\Delta\tau\,\mathbf{J}\times\mathbf{B}(\mathbf{r})

Y, considerando los elementos como de tamaño diferencial, resulta finalmente la integral

\mathbf{F}_\mathrm{m} = \int_\tau  \mathbf{J} \times \mathbf{B}\,\mathrm{d}\tau

Aunque en el proceso hemos realizado algunas aproximaciones, en el límite \Delta\tau\to 0 se convierten en identidades.

4 Fuerza sobre una corriente lineal

El caso importante de la fuerza sobre una corriente filiforme puede deducirse de la expresión para una distribución volumétrica. El resultado es que si tenemos una corriente I circulando a lo largo de una curva Γ (abierta o cerrada) la fuerza magnética sobre la corriente es
\mathbf{F}_\mathrm{m}=I\int_\Gamma \mathrm{d}\mathbf{r}\times\mathbf{B}

4.1 Demostración

Una corriente filiforme no es más que una corriente de volumen en el interior de un tubo. Podemos tomar como elemento de volumen un segmento de ese tubo, cumpliéndose \mathrm{d}\tau = \mathrm{d}\mathbf{S}\cdot\mathrm{d}\mathbf{r} (volumen igual a base por altura), por lo que

\mathbf{F}_\mathrm{m} = \int_\tau  \mathbf{J} \times \mathbf{B}\,\mathrm{d}\tau   = \int_\Gamma \int_S \mathbf{J} \times \mathbf{B}\,\mathrm{d}\mathbf{S}\cdot\mathrm{d}\mathbf{r}


La integral sobre una sección del cable de la densidad de corriente no es otra cosa que la intensidad de corriente I. Por tanto

4.2 Espira sumergida totalmente en un campo

4.3 Espira sumergida parcialmente en un campo

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace