Corriente eléctrica
De Laplace
(→Conductividad. Ley de Ohm) |
(→Conductores filiformes) |
||
Línea 101: | Línea 101: | ||
==Conductores filiformes== | ==Conductores filiformes== | ||
+ | De entre los distintos conductores óhmicos, una configuración muy común es la del ''conductor filiforme'', en el cual las dimensiones | ||
+ | laterales del conductor son mucho más pequeñas que su radio de curvatura. El ejemplo más común es un cable conector. | ||
+ | |||
+ | Cuando se aplica una diferencia de potencial <math>V_A-V_B</math> entre los extremos de un cable, se establece una corriente <math>I</math> a lo largo de él, cuya densidad se puede suponer paralela al cable y uniforme sobre una sección transversal. En este caso, se verifica | ||
+ | |||
+ | <center><math>V_A-V_B = \int_A^B \mathbf{E}{\cdot}\mathrm{d}\mathbf{r} = \int_A^B\frac{\mathbf{J}}{\sigma}{\cdot}\mathrm{d}\\mathbf{r} = I | ||
+ | \int_A^B\frac{\mathrm{d}l}{\sigma S} = I R</math></center> | ||
+ | |||
+ | La cantidad <math>R</math> es la ''resistencia'' del conductor filiforme, medida en <math>\Omega</math> en el SI. A esta relación entre voltaje y corriente también se la suele denominar ley de Ohm. | ||
+ | |||
+ | En el caso particular de un cable de longitud y conductividad constantes, la resistencia se reduce a <math>R=l/(\sigma S)</math>. | ||
+ | |||
+ | La inversa de la resistencia se denomina \emph{conductancia}, <math>G</math> y su unidad en el SI es el Siemens (1 S=1 Ω<sup>-1</sup>). Para un conductor filiforme | ||
+ | |||
+ | <center><math>I=G(V_A-V_B)\,</math></center> | ||
+ | |||
==Coeficientes de conductancia y circuitos equivalentes== | ==Coeficientes de conductancia y circuitos equivalentes== | ||
==Consumo de energía eléctrica== | ==Consumo de energía eléctrica== |
Revisión de 13:23 25 feb 2009
1 Introducción
2 Densidades de corriente e intensidad de corriente
2.1 Densidad volumétrica de corriente
En situaciones no estáticas, las cargas que forman un sistema se encuentran en movimiento. Aunque todas las cargas que forman un material se encuentran en constante agitación, sólo una parte de ellas (los llamados portadores de carga poseen una velocidad promedio distinta de cero. La magnitud macroscópica que describe este movimiento colectivo es la densidad de corriente, definida como

siendo su unidad en el SI 1 A/m².
Esta densidad de corriente no tiene una relación directa con la densidad de carga, ya que es perfectamente posible que en un punto de un conductor la densidad de carga se anule (porque haya tantas cargas positivas como negativas), mientras que la densidad de corriente sea distinta de cero (por ejemplo, porque las negativas se estén moviendo y las positivas no). Sí existe relación con la densidad de portadores. Dentro de un material en el cual existe movimiento de cargas por el desplazamiento de una o varias especies (tipos de portadores, por ejemplo, en agua salada tendríamos al menos cuatro especies: OH−, H3O+, Cl−, Na+), la densidad de corriente puede escribirse como

siendo Ni la densidad de cada especie, su velocidad neta promedio, o velocidad de arrastre, normalmente muy pequeña, y Zie su carga. En el caso común de un metal, en el que sólo los electrones se mueven
$. En un semiconductor tendremos un término debido a los electrones y otro debido a los huecos.
2.2 Densidad superficial de corriente
Del mismo modo que se define la densidad de corriente volumétrica también puede definirse la densidad de corriente superficial

Esta densidad será de interés cuando tengamos que los portadores de carga están concentrados en las superficies de los materiales.
2.3 Intensidad de corriente
Si consideramos el flujo de carga que atraviesa una determinada sección de un conductor, el resultado es la intensidad de corriente

La intensidad de corriente, que se mide en amperios (A) en el SI, es un escalar con signo, indicando si el flujo es el sentido de la normal a la superficie o en el opuesto.
En el caso de una densidad de corriente superficial, puede obtenerse la intensidad de corriente que atraviesa una curva Γ (trazada sobre la superficie, y que es atravesada por la corriente) como

siendo un vector tangente a la superficie y normal a la curva Γ.
3 Ley de conservación de la carga
Una de las propiedades básicas de la interacción electromagnética es que la carga se conserva localmente, esto es, no puede crearse ni destruirse una carga neta en ningún punto. Esto se traduce matemáticamente en que si en un volumen τ la carga contenida disminuye, ello se debe al flujo al exterior a través de la frontera:

La versión diferencial de esta ley se escribe

Asociada a la ley de conservación de la carga existe una condición de salto que relaciona las densidades de corriente a ambos lados de una interfaz entre dos medios. Esta condición es, en general
![\mathbf{n}{\cdot}[\mathbf{J}] + \nabla_s{\cdot}\mathbf{K} + \frac{\partial\sigma_s}{\partial t}=0](/wiki/images/math/c/6/f/c6f6ea41accc6beef240415c3e40be5a.png)
siendo la divergencia superficial de la densidad de corriente superficial. En muchos casos prácticos, no obstante, este término está ausente y la condición se reduce a una que liga el salto en
con la variación de cargas en la superficie.
En situaciones de corrientes estacionarias (independientes del tiempo), la densidad de corriente resulta ser un campo solenoidal



Esto implica que, para corrientes estacionarias, si consideramos un tubo de corriente, la intensidad en dos secciones cualesquiera de él es la misma

En situaciones no estacionarias esto no será cierto en general, ya que podrá haber acumulación de carga en los puntos intermedios.
En situaciones estacionarias la condición de salto (siempre que ) se reduce a
![\mathbf{n}{\cdot}[\mathbf{J}]=0](/wiki/images/math/a/d/6/ad621ced2218bcb1b784a17006bc2129.png)
esto es, que la corriente que llega normalmente a la superficie debe coincidir con la que sale de ella.
En el caso particular de un electrodo perfectamente conductor, sumergido en un material por el cual puede fluir una corriente , pero además alimentado por un cable (que lo une a un generador, por ejemplo), la ley de conservación de la carga puede desglosarse, separando la corriente que fluye por el medio, de la que entra hacia el electrodo por el cable de alimentación. Si denominamos I a esta última, la ley de conservación en forma integral queda

donde Q es la carga almacenada en el electrodo y el flujo de se calcula a través del material que rodea al electrodo, excluyendo el cable. En esta forma, la ecuación se interpreta como que la corriente que llega al electrodo, parte se emplea en aumentar la carga almacenada y parte se escapa a través del medio circundante (lo que se denominan pérdidas). Nótese que sólo para esta clase de sistemas, y exclusivamente en el caso de que no haya pérdidas, se verificará la relación I = dQ / dt, que en ningún caso puede considerarse una definición de intensidad de corriente, sino sólo como un caso muy particular de la ley de conservación de la carga.
4 Ecuaciones del campo y de la corriente
5 Conductividad. Ley de Ohm
Para obtener las distribuciones de corrientes de campos y corrientes en situaciones estacionarias, tenemos las ecuaciones


Sin embargo, como ocurre con los dieléctricos ideales, estas ecuaciones no son suficientes, ya que debemos tener una relación constitutiva que ligue la densidad de corriente con el campo que la produce.
En principio, dicha relación depende de la naturaleza del material conductor ya que no es lo mismo una disolución salina, que un metal,
que un semiconductor o que un plasma. Sin embargo, se encuentra que para una gran variedad de situaciones, la relación entre y
es de simple proporcionalidad

siendo ésta la llamada ley de Ohm. La constante de proporcionalidad σ es la conductividad, que se mide en Siemens/metro (S/m) en el SI y que describe la facilidad con que las cargas fluyen a través del material. Los valores de σ abarcan un amplísimo rango, desde casi 108 S/m para muy buenos conductores como la plata y el cobre hasta valores tan bajos como 10−14 S/m para dieléctricos muy aislantes.
En ocasiones, en lugar de la conductividad se emplea como parámetro su inversa, la resistividad, r = 1 / σ, que se mide en Ohmios·metro ().
En los materiales óhmicos, la determinación del potencial eléctrico es muy parecida al cálculo en materiales dieléctricos lineales, empleando la conductividad en lugar de la permitividad. Se trata de resolver

con las condiciones de salto
![\mathbf{n}\times[\mathbf{E}]=\mathbf{0}](/wiki/images/math/6/d/9/6d9a6f945a9f8273282ed8720257a0ba.png)
![\mathbf{n}{\cdot}[\mathbf{J}]=0](/wiki/images/math/a/d/6/ad621ced2218bcb1b784a17006bc2129.png)
a las que hay que añadir las condiciones de contorno en aquellas superficies cuya tensión esté fijada, y las correspondientes a las superficies libres (en cuyo exterior está el vacío o un dieléctrico ideal) para las cuales Jn = 0.
6 Conductores filiformes
De entre los distintos conductores óhmicos, una configuración muy común es la del conductor filiforme, en el cual las dimensiones laterales del conductor son mucho más pequeñas que su radio de curvatura. El ejemplo más común es un cable conector.
Cuando se aplica una diferencia de potencial VA − VB entre los extremos de un cable, se establece una corriente I a lo largo de él, cuya densidad se puede suponer paralela al cable y uniforme sobre una sección transversal. En este caso, se verifica
La cantidad R es la resistencia del conductor filiforme, medida en Ω en el SI. A esta relación entre voltaje y corriente también se la suele denominar ley de Ohm.
En el caso particular de un cable de longitud y conductividad constantes, la resistencia se reduce a R = l / (σS).
La inversa de la resistencia se denomina \emph{conductancia}, G y su unidad en el SI es el Siemens (1 S=1 Ω-1). Para un conductor filiforme
