Problemas de Dinámica Analítica (MR G.I.C.)
De Laplace
(→Engranaje sobre cremallera) |
(→Dos partículas unidas por una barra sin masa con una cuchilla) |
||
Línea 8: | Línea 8: | ||
==[[ Dos partículas unidas por una barra sin masa con una cuchilla, (MR) | Dos partículas unidas por una barra sin masa con una cuchilla]] == | ==[[ Dos partículas unidas por una barra sin masa con una cuchilla, (MR) | Dos partículas unidas por una barra sin masa con una cuchilla]] == | ||
+ | [[Imagen:MR_Masas_cuchilla.png|right]] | ||
Dos partículas puntuales de masa <math>m</math> están unidas por una barra de longitud <math>L</math> y masa despreciable. Las partículas deslizan sobre un plano fijo <math>OX_1Y_1</math>, pero una de las partículas tiene una cuchilla, de modo que su velocidad sólo puede tener componente paralela a la cuchilla. Una fuerza <math>\vec{F}=F_0\,\vec{\imath}_1</math> constante actúa sobre la partícula que no tiene la cuchilla. | Dos partículas puntuales de masa <math>m</math> están unidas por una barra de longitud <math>L</math> y masa despreciable. Las partículas deslizan sobre un plano fijo <math>OX_1Y_1</math>, pero una de las partículas tiene una cuchilla, de modo que su velocidad sólo puede tener componente paralela a la cuchilla. Una fuerza <math>\vec{F}=F_0\,\vec{\imath}_1</math> constante actúa sobre la partícula que no tiene la cuchilla. | ||
#Encuentra la expresión del vínculo no holónomo del sistema. | #Encuentra la expresión del vínculo no holónomo del sistema. |
Revisión de 12:17 10 abr 2018
Contenido |
1 Problemas del boeltín
1.1 Engranaje sobre cremallera
La figura muestra un sistema mecánico formado por un engranaje que rueda sobre una cremallera y está conectado a un deslizador con una ranura que desliza respecto al pasador en B. El deslizador está acoplado a un muelle, de constante elástica k, que se encuentra relajado cuando x = 2R. En ese instante se tiene θ = 0. Las masas del engranaje, el deslizador y la cremallera son la misma e igual a m. El radio de giro del engranaje es rc. El contacto entre el pasador y la ranura es liso. El mecanismo es accionado por una fuerza aplicada sobe la cremallera como se indica en la figura.
- Encuentra el número de grados de libertad y elige un conjunto de coordenadas generalizadas para describir el movimiento.
- Encuentra las ecuaciones diferenciales del movimiento.
1.2 Dos partículas unidas por una barra sin masa con una cuchilla
Dos partículas puntuales de masa m están unidas por una barra de longitud L y masa despreciable. Las partículas deslizan sobre un plano fijo OX1Y1, pero una de las partículas tiene una cuchilla, de modo que su velocidad sólo puede tener componente paralela a la cuchilla. Una fuerza constante actúa sobre la partícula que no tiene la cuchilla.
- Encuentra la expresión del vínculo no holónomo del sistema.
- Escribe las ecuaciones de Lagrange utilizando la técnica de los multiplicadores de Lagrange.
- Identifica el significado físico del multiplicador de Lagrange.
2 Problemas de examen
2.1 Deslizadera y disco rodando sin deslizar
Un disco homogéneo (sólido "2") de masa m y radio R puede rotar alrededor de su centro C, que se mantiene fijo. Una deslizadera vertical (sólido "0"), de masa m puede moverse a lo largo del eje O1Y1, de modo que en el punto de contacto A el disco rueda sin deslizar sobre el sólido "0". La deslizadera está conectada a un muelle de constante elástica k y longitud natural l0. El otro extremo del muelle está anclado en un punto fijo del eje O1X1, de modo que se mantiene siempre vertical. El sistema está sometido a la acción de la gravedad como se indica en la figura.
- ¿Cuantos grados de libertad tiene el sistema? Determina las reducciones cinemáticas de los movimientos {01}, {20} y {21}, así como sus derivadas temporales. El resultado debe quedar en función del número de grados de libertad y sus derivadas temporales.
- Calcula las energías cinética y potencial del sistema en función de sus grados de libertad.
- Escribe la lagrangiana del sistema, así como las ecuaciones diferenciales de movimiento.
- Se aplica sobre el disco un par de fuerzas externo
. Encuentra las ecuaciones de movimiento en este caso. ¿Para qué valor de ω aparece una resonancia mecánica?
- Ahora no hay par aplicado. Se aplica una percusión
sobre el punto B del sólido "2". En el instante de la percusión se cumple s(0) = l0, θ(0) = 0,
,
. Calcula el estado del sistema inmediatamente después de la percusión.
3 Aro colgando de una barra que rota
La barra homogénea OA (sólido "0") tiene masa m y longitud L. Está articulada en el punto fijo O y rota de modo que está siempre contenida en el plano OX1Y1. En su extremo A está articulado un aro homogéneo de radio R y masa m (sólido "2"). El sistema está sometido a la acción de la gravedad. Se recomienda utilizar los ángulos {θ,ψ} como coordenadas para resolver el problema.
- Determina las reducciones cinemáticas de los movimientos {01}, {21}, {20}.
- Calcula las energías cinética y potencial totales del sistema.
- Usando las herramientas de la Dinámica Analítica, encuentra las ecuaciones de movimiento.
- Se impone el vínculo cinemático
. Determina el par necesario para imponer dicho vínculo. Supón que en el instante inicial se tiene θ(0) = 0, ψ(0) = 0.
- Supongamos que las coordenadas {θ,ψ} son de nuevo libres. Supón que se tiene θ(0) = 0, ψ(0) = 0. En ese instante una percusión
actúa sobre el punto A. Determina el estado cinemático del sistema justo después de la percusión.