Entrar Página Discusión Historial Go to the site toolbox

Campo eléctrico de un segmento

De Laplace

(Diferencias entre revisiones)
Línea 7: Línea 7:
El campo eléctrico creado por una distribución lineal de carga es
El campo eléctrico creado por una distribución lineal de carga es
-
<center><math>\vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon_0}\int_L\frac{\lambda(\vec{r}-\vec{r}')\mathrm{d}l'}{|\vec{r}-\vec{r}'|^3}</math></center>
+
<center><math>\vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon_0}\int_L\frac{\lambda(\vec{r}-\vec{r}')\mathrm{d}l'}{|\vec{r}-\vec{r}'|^3}</math></center>
 +
 
 +
En nuestro caso, situamos el segmento cargado en el eje OZ y centrado en el origen de coordenadas, de forma que los puntos donde se encuentran las cargas  cumplen
 +
 
 +
<center><math>\vec{r}'=z'\vec{k}\qquad \qquad \mathrm{d}\vec{r}'=\mathrm{d}z'\vec{k}\qquad\qquad \mathrm{d}l'=|\mathrm{d}\vec{r}'|=\mathrm{d}z'</math></center>
==Hilo infinito==
==Hilo infinito==
[[Categoría:Problemas de electrostática en el vacío (GIE)]]
[[Categoría:Problemas de electrostática en el vacío (GIE)]]

Revisión de 20:22 28 mar 2017

Contenido

1 Enunciado

Calcule el campo eléctrico producido por un segmento rectilíneo cargado uniformemente con una densidad de carga λ0 en cualquier punto del plano perpendicular al segmento por su punto medio.

A partir del resultado anterior, halle el campo eléctrico creado por un hilo rectilíneo infinitamente largo cargado con una densidad homogénea λ0.

2 Segmento

El campo eléctrico creado por una distribución lineal de carga es

\vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon_0}\int_L\frac{\lambda(\vec{r}-\vec{r}')\mathrm{d}l'}{|\vec{r}-\vec{r}'|^3}

En nuestro caso, situamos el segmento cargado en el eje OZ y centrado en el origen de coordenadas, de forma que los puntos donde se encuentran las cargas cumplen

\vec{r}'=z'\vec{k}\qquad \qquad \mathrm{d}\vec{r}'=\mathrm{d}z'\vec{k}\qquad\qquad \mathrm{d}l'=|\mathrm{d}\vec{r}'|=\mathrm{d}z'

3 Hilo infinito

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace