Partícula unida a un sistema articulado
De Laplace
(Diferencias entre revisiones)
Línea 27: | Línea 27: | ||
lo que da | lo que da | ||
- | <center><math>\vec{r}=\overrightarrow{OP}= | + | <center><math>\vec{r}=\overrightarrow{OP}=h\left(\cos(\Omega t)+\cos(2\Omega t)\right)\vec{\imath}+h\left(\mathrm{sen}(\Omega t)-\mathrm{sen}(2\Omega t)\right)\vec{\jmath}</math></center> |
==Magnitudes en t=0 == | ==Magnitudes en t=0 == | ||
== Magnitudes en t = π/(2Ω)== | == Magnitudes en t = π/(2Ω)== | ||
[[Categoría:Problemas de cinemática tridimensional de la partícula (GIE)]] | [[Categoría:Problemas de cinemática tridimensional de la partícula (GIE)]] |
Revisión de 18:07 29 oct 2015
Contenido |
1 Enunciado
Se tiene un sistema articulado formado por dos barras de la misma masa y la misma longitud h situadas sobre una superficie horizontal. La primera barra tiene un extremo O fijo, de forma que gira alrededor de él con velocidad angular constante Ω respecto a un sistema de ejes fijos OXY. La segunda barra está articulada en el extremo A de la primera y gira respecto de los mismos ejes fijos con una velocidad angular − 2Ω. En el instante t = 0 el sistema está completamente extendido a lo largo del eje OX.
- Escriba las ecuaciones horarias de la posición del punto B para todo instante.
- Para el instante t = 0 halle
- La velocidad y la rapidez.
- La aceleración como vector y sus componentes intrínsecas (escalares).
- El radio y el centro de curvatura.
- Para el instante t = π / (2Ω) calcule
- La velocidad y la rapidez.
- La aceleración como vector y sus componentes intrínsecas (escalares).

2 Ecuaciones horarias
Podemos halalr la posición instantánea mediante una suma vectorial

siendo

y

lo que da
