Dos masas unidas en un aro
De Laplace
(→Velocidades) |
|||
Línea 42: | Línea 42: | ||
[[Archivo:dos-masas-aro-01.png|right]] | [[Archivo:dos-masas-aro-01.png|right]] | ||
- | De esta masa sabemos describe una trayectoria circular alrededor del origen | + | De esta masa sabemos describe una trayectoria circular alrededor del origen, por lo que su velocidad cumple |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | por lo que | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<center><math>\vec{v}_1 = \vec{\omega}\times\vec{r}_1</math></center> | <center><math>\vec{v}_1 = \vec{\omega}\times\vec{r}_1</math></center> | ||
Línea 70: | Línea 54: | ||
<center><math>\omega = \frac{|\vec{v}_1|}{|\vec{r}_1|}= \frac{v_0}{R}=\frac{10}{50}\,\frac{\mathrm{rad}}{\mathrm{s}} = 0.2\,\frac{\mathrm{rad}}{\mathrm{s}}</math></center> | <center><math>\omega = \frac{|\vec{v}_1|}{|\vec{r}_1|}= \frac{v_0}{R}=\frac{10}{50}\,\frac{\mathrm{rad}}{\mathrm{s}} = 0.2\,\frac{\mathrm{rad}}{\mathrm{s}}</math></center> | ||
+ | y esto nos da la velocidad lineal, en cm/s | ||
+ | |||
+ | <math>\vec{v}_1=\left(0.2\vec{k}\right)\times(40\vec{\imath}+30\vec{\jmath}) = \left(-6\vec{\imath}+8\vec{\jmath}\right)\frac{\mathrm{cm}}{\mathrm{s}}</math> | ||
+ | |||
+ | Operando igualmente obtenemos la velocidad de la segunda masa, que describirá otro movimiento circular con la misma velocidad angular | ||
+ | |||
+ | <math>\vec{v}_2=\left(0.2\vec{k}\right)\times(40\vec{\imath}-30\vec{\jmath}) = \left(6\vec{\imath}+8\vec{\jmath}\right)\frac{\mathrm{cm}}{\mathrm{s}}</math> | ||
+ | |||
+ | La velocidad del CM es, como la posición, la media aritmética de las dos velocidades | ||
==Velocidad angular== | ==Velocidad angular== |
Revisión de 21:17 30 ene 2012
Contenido |
1 Enunciado
Dos pequeñas masas iguales se encuentran ensartadas en un aro circular de radio (de masa despreciable). Las masas están unidas entre sí por una varilla rígida de longitud y masa despreciable. La masa m1 se mueve en todo momento con rapidez .
- Empleando el sistema de ejes de la figura en el que el eje OX es ortogonal a la varilla, determine las posiciones, velocidades y aceleraciones de ambas masas y del centro de masas del sistema.
- Calcule la velocidad angular del sistema de dos masas.
- Halle el momento cinético y la energía cinética del sistema respecto al centro del aro y respecto al centro de masas.
- Calcule la fuerza que el aro ejerce sobre cada una de las masas. Determine la resultante y el momento resultante de estas fuerzas respecto al centro del anillo y respecto al centro de masas.
2 Posiciones, velocidades y aceleraciones
2.1 Posiciones
Obtenemos las tres posiciones casi por simple inspección.
- Masa 1
- Conocemos su coordenada y, ya que por simetría, el OX pasa por el centro de la varilla
- y calculamos su coordenada x aplicando el teorema de Pitágoras
- lo que nos da el vector de posición
- Masa 2
- Su posición es la simétrica de la 1.
- Centro de masas
- Por ser las dos masas iguales, el CM está en el punto medio entre las dos
2.2 Velocidades
De la masa 1 conocemos su rapidez
De esta masa sabemos describe una trayectoria circular alrededor del origen, por lo que su velocidad cumple
siendo la velocidad angular en la dirección del eje de giro
El valor de esta velocidad angular es
y esto nos da la velocidad lineal, en cm/s
Operando igualmente obtenemos la velocidad de la segunda masa, que describirá otro movimiento circular con la misma velocidad angular
La velocidad del CM es, como la posición, la media aritmética de las dos velocidades