Entrar Página Discusión Historial Go to the site toolbox

Amortiguamiento viscoso

De Laplace

(Diferencias entre revisiones)
(u)
Línea 23: Línea 23:
La solución de esta ecuación diferencial es elemental, ya que podemos separarla en dos integrales
La solución de esta ecuación diferencial es elemental, ya que podemos separarla en dos integrales
-
<center><math>\frac{\mathrm{d}v}{v}=-\gamma\,\mathrm{d}t\qquad\Rightarrow\qquad\int_{v_0}^v\frac{\mathrm{d}v}{v}=-\gamma \int_0^t\mathrm{d}t</math></center>
+
<center><math>\frac{\mathrm{d}v}{v}=- \frac{\gamma}{m}\,\mathrm{d}t\qquad\Rightarrow\qquad\int_{v_0}^v\frac{\mathrm{d}v}{v}=-\frac{\gamma}{m} \int_0^t\mathrm{d}t</math></center>
siendo el resultado
siendo el resultado
-
<center><math>\ln\left(\frac{v}{v_0}\right) = -\gamma t\qquad\rightarrow\qquad v = v_0\mathrm{e}^{-\gamma t}</math></center>
+
<center><math>\ln\left(\frac{v}{v_0}\right) = -\frac{\gamma}{m} t\qquad\Rightarrow\qquad v = v_0\mathrm{e}^{-\gamma t/m}</math></center>
 +
 
 +
Vemos que la velocidad decae exponencialmente y (teóricamente), nunca llega a pararse. Ello no quiere decir que la distancia recorrida sea infinita. Integrando de nuevo tenemos
 +
 
 +
<center><math>\frac{\mathrm{d}x}{\mathrm{d}t}=v =  v_0\mathrm{e}^{-\gamma t/m}\qquad\Rightarrow\qquad x = \int_0^t  v_0\mathrm{e}^{-\gamma t/m}\mathrm{d}t=\frac{mv_0}{\gamma}\left(1-\mathrm{e}^{-\gamma t/m}\right)</math></center>
 +
 
 +
Esta integral se va acercando asintóticamente a un valor constante.
 +
 
 +
Cuando <math>t\to\infty</math> la velocidad de la bala se anula y la distancia total que recorre es
 +
 
 +
<center><math>\Delta x = x(\infty) -x(0)= \frac{m v_0}{\gamma}(1-0)=\frac{m v_0}{\gamma}</math></center>
 +
 
 +
y, por tanto, si lo que medimos es la distancia total recorrida, hallamos la velocidad de entrada despejando
 +
 
 +
<center><math>v_0 = \frac{\gamma\,\Delta x}{m}</math></center>
[[Categoría:Problemas de dinámica de la partícula (GIE)]]
[[Categoría:Problemas de dinámica de la partícula (GIE)]]

Revisión de 23:29 24 nov 2011

1 Enunciado

El rozamiento que experimenta una pequeña partícula en medio denso y viscoso como un aceite es de la forma \vec{F}_r=-\gamma\vec{v}. Se construye un sensor de balística, en el que una bala de masa m impacta horizontalmente en un bloque de silicona en el que se cumple la ley anterior. Si la bala recorre una distancia x0 hasta pararse. ¿Con qué velocidad impactó en el bloque?

2 Solución

La bala, una vez que penetra en la silicona, se ve frenada. Inicialmente entra con una velocidad \vec{v}_0, que suponemos horizontal, y la fuerza de rozamiento va reduciendo su rapidez, hasta que llega a detenerse por completo. Hasta que se para recorre una cierta distancia Δx. Se trata de calcular esta distancia y relacionarla con la velocidad inicial.

Lu ecuación de movimiento de la bala se reduce a

m\vec{a}=-\gamma\vec{v}

con las condiciones iniciales

\vec{v}(t=0)=\vec{v}_0\qquad \vec{}(t=0)=\vec{0}

Despreciando el efecto del peso, podemos suponer que el movimiento es horizontal en todo instante, lo cual nos permite emplear cantidades escalares

\vec{r}=x\vec{\imath}\qquad\qquad \vec{v}=v\vec{\imath}\qquad\qquad \vec{a}=a\vec{\imath}

lo cual nos deja con las ecuaciones escalares

m\frac{\mathrm{d}v}{\mathrm{d}t}=-\gamma v\qquad \qquad v(0)=v_0\qquad\qquad x(0) = 0

La solución de esta ecuación diferencial es elemental, ya que podemos separarla en dos integrales

\frac{\mathrm{d}v}{v}=- \frac{\gamma}{m}\,\mathrm{d}t\qquad\Rightarrow\qquad\int_{v_0}^v\frac{\mathrm{d}v}{v}=-\frac{\gamma}{m} \int_0^t\mathrm{d}t

siendo el resultado

\ln\left(\frac{v}{v_0}\right) = -\frac{\gamma}{m} t\qquad\Rightarrow\qquad v = v_0\mathrm{e}^{-\gamma t/m}

Vemos que la velocidad decae exponencialmente y (teóricamente), nunca llega a pararse. Ello no quiere decir que la distancia recorrida sea infinita. Integrando de nuevo tenemos

\frac{\mathrm{d}x}{\mathrm{d}t}=v =  v_0\mathrm{e}^{-\gamma t/m}\qquad\Rightarrow\qquad x = \int_0^t  v_0\mathrm{e}^{-\gamma t/m}\mathrm{d}t=\frac{mv_0}{\gamma}\left(1-\mathrm{e}^{-\gamma t/m}\right)

Esta integral se va acercando asintóticamente a un valor constante.

Cuando t\to\infty la velocidad de la bala se anula y la distancia total que recorre es

\Delta x = x(\infty) -x(0)= \frac{m v_0}{\gamma}(1-0)=\frac{m v_0}{\gamma}

y, por tanto, si lo que medimos es la distancia total recorrida, hallamos la velocidad de entrada despejando

v_0 = \frac{\gamma\,\Delta x}{m}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace