Entrar Página Discusión Historial Go to the site toolbox

1.3. Fórmulas dimensionalmente incorrectas

De Laplace

(Diferencias entre revisiones)
(Caso (d))
Línea 72: Línea 72:
==Caso (d)==
==Caso (d)==
 +
En el caso
 +
 +
<center><math>\frac{x-vt}{t-v/a} = \sqrt{\frac{W-F/t}{m}}</math></center>
 +
==Caso (e)==
==Caso (e)==
==Caso (f)==
==Caso (f)==
[[Categoría:Problemas de metrología]]
[[Categoría:Problemas de metrología]]

Revisión de 21:17 8 sep 2010

Contenido

1 Enunciado

Teniendo en cuenta las dimensiones calculadas en el problema anterior, indique cuáles de las siguientes expresiones son necesariamente incorrectas:

a) W = \frac{1}{2}mv^2 + gy
b) \vec{r}\times\vec{L} = R^2\vec{p}
c) \vec{M} = \vec{r}\times\vec{F}+\vec{v}\times\vec{p}
d) \int \vec{F}\,\mathrm{d}t = \frac{\mathrm{d}m}{\mathrm{d}t}\vec{v}+ m\vec{a}t
e) \int (P-\vec{F}\cdot\vec{v})\,\mathrm{d}t = mgh + \frac{p^2}{2m}
f) P = m\frac{(v^2/R - a)}{(t-x/v)}(x-\pi R^2)
g) \int\frac{P-\vec{v}\cdot(\vec{a}+\vec{p}/m)}{v^2}\,\mathrm{d}t = \frac{m(t-2/t)}{v}

2 Caso (a)

Para que una fórmula sea dimensionalmente correcta los dos miembros de la ecuación deben tener las mismas dimensiones, y lo mismo debe ocurrir con cada uno de los sumandos de las sumas o diferencias que aparezcan en ella.

En el primer caso

W = \frac{1}{2}mv^2 + gy

tenemos que el Trabajo trabajo tiene dimensiones de masa por velocidad al cuadrado

[W]= M L^2T^{-2}\,

De los términos del segundo miembro, el primero tiene claramente las mismas dimensiones que este

\left[\frac{1}{2}mv^2\right] = [m][v]^2 = M(LT^{-1})^2 = ML^2T^{-2}\,

mientras que el segundo tiene las dimensiones de una aceleración por una distancia

[gy] = [a][y] = \left(LT^{-2}\right)L = L^2T^{-2}\,

Puesto que aquí no hay ninguna potencia de la masa, que si aparece en los otros dos términos, esta fórmula es necesariamente incorrecta.

3 Caso (b)

En el segundo caso

\vec{r}\times\vec{L} = R^2\vec{p}

el primer miembro tiene dimensiones de un momento cinético por una distancia

\left[\vec{r}\times\vec{L}\right] = [r][L] = L(ML^2T^{-1}) = ML^3T^{-1}

y el segundo de una cantidad de movimiento por una superficie

\left[R^2\vec{p}\right] = L^2(MLT^{-1}) = ML^3T^{-1}

Puesto que las dimensiones de los miembros son coincidentes, esta fórmula puede ser correcta. Lo que no quiere decir que lo sea.

4 Caso (c)

En el tercer caso

\vec{M} = \vec{r}\times\vec{F}+\vec{v}\times\vec{p}

El primer miembro es el momento de una fuerza, que tiene la misma ecuación dimensional que el trabajo

[M]= M L^2 T^{-2}\,

En el segundo miembro tenemos, para el primer término

\left[\vec{r}\times\vec{F}\right] = [r][F]=L(MLT^{-2}) = M L^2T^{-2}

y para el segundo

\left[\vec{v}\times\vec{p}\right]= [v][p]= (LT^{-1})(MLT^{-1}) = ML^2T^{-2}

Puesto que todos los términos tienen las mismas dimensiones, la fórmula puede ser correcta.

5 Caso (d)

En el caso

\frac{x-vt}{t-v/a} = \sqrt{\frac{W-F/t}{m}}

6 Caso (e)

7 Caso (f)

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace