Masa en plano inclinado con muelle (Nov. 2018 G.I.C.)
De Laplace
Contenido |
1 Enunciado
Una masa m está conectada a un muelle de constante elástica k y longitud natural nula. La masa puede deslizarse por un plano inclinado como se indica en la figura. El muelle se mantiene siem- pre paralelo a la superficie del plano inclinado. La gravedad actúa como se indica en el dibujo.
- Si el contacto entre la masa y el plano es liso, ¿para que valor de x la masa está en equilibrio?
- Teniendo en cuenta ahora el rozamiento y suponiendo que , ¿cuál es el rango de posiciones de equilibrio?
2 Solución
2.1 Fuerzas sobre la masa
La figura de la derecha muestra las fuerzas que actúan sobre la masa: su peso, la fuerza del muelle, la normal del plano y la fuerza de rozamiento. El sentido de todas es conocido, salvo la de rozamiento. La expresión de estas fuerzas es
Como el vínculo impuesto por el plano inclinado es bilateral debe cumplirse N > 0.
2.2 Equilibrio sin rozamiento
Si suponemos que no hay rozamiento la condición de equilibrio es
2.3 Equilibrio con rozamiento
Si suponemos que ahora hay rozamiento, y ademas imponemos que , la condición de equilibrio es
De la primera expresión obtenemos que, para que haya equilibrio, la fuerza de rozamiento y la fuerza normal del plano deben valer
Para que el equilibrio sea posible el módulo de la fuerza de rozamiento debe ser menor que el valor máximo posible
siendo μ el coeficiente de rozamiento estático. Hemos de considerar dos situaciones
x > L
En este caso el módulo de la fuerza de rozamiento es
x < L
En este caso el módulo de la fuerza de rozamiento es
Por tanto, para que el equilibrio sea posible debe ocurrir