Barra con centro deslizando sobre eje, Septiembre 2016 (MR G.I.C.)
De Laplace
Contenido |
1 Enunciado
Una barra homogénea delgada (sólido "2") de masa M y longitud 2L se mueve de modo que su centro se encuentra siempre sobre el eje OZ1. La barra tiene dos grados de libertad de rotación. El sistema auxiliar OX0Y0Z0 se define de modo que la barra esté siempre contenida en el plano OX0Z0. La barra está sometida a la acción de la gravedad, como se indica en la figura. El contacto de la barra con el eje OZ1 es liso.
- Calcula las reducciones cinematicas en el centro de la barra de los tres movimientos que se pueden definir en el problema.
- Encuentra la expresión del momento cinético de la barra respecto de su centro.
- Encuentra la expresión de la energía cinética de la barra.
- Escribe la Lagrangiana del sistema, así como una integral primera que no sea la energía mecánica.
- En el instante inicial, el centro de la barra se encuentra en el punto O y los valores iniciales de las coordenadas angulares son θ(0) = π / 2 y φ(0) = 0. La barra se encuentra en reposo. Se ejerce una percusión aplicada en el punto B. Determina los valores de las velocidades generalizadas justo después de la percusión.
2 Solución
2.1 Reducciones cinemáticas
2.1.1 Movimiento {01}
Este es el movimiento de rotación permanente del plano OX0Z0. La reducción en el punto O es
Calculamos la velocidad en el punto G usando el Teorema de Chasles
Como , este vector es paralelo a , el producto vectorial es nulo. La reducción cinemática en el centro de la barra es
2.1.2 Movimiento {20}
Este es el movimiento de la barra respecto del plano OX0Z0. La reducción cinemática en el punto G es
2.1.3 Movimiento {21}
Construimos la reducción cinemática usando la composición {21} = {20} + {01}. Para el vector rotación tenemos
Para la velocidad tenemos
2.2 Momento cinético respecto al centro de masas
El momento cinético respecto al centro de masas se puede calcular con la expresión
Expresamos el tensor de inercia de la barra en el punto O en la base del sólido solidario con la barra
con
Tenemos que expresar el vector rotación en la base "2" para hacer el producto escalar. Examinando el dibujo tenemos
El vector expresado en la base "2" es
El momento angular es
2.3 Energía cinética de la barra
Podemos calcularla como suma de la energía cinética de traslación del centro de masa y energía cinética de rotación alrededor de él
T = Ttras + Trot
La energía cinética de traslación es
La de rotación es
La energía cinética total es
2.4 Lagrangiana e integral primera
La barra está sometida al peso (fuerza conservativa) por lo que se puede definir una energía potencial gravitatoria. Tomando como origen el plano OX0Y0 tenemos
U = Mgz
y la lagrangiana es
Vemos que la coordenada φ no aparece en la Lagrangiana. Entonces, de la ecuación de Lagrange correspondiente deducimos que su momento generalizado asociado se conserva
Podemos escribir la integral primera como
2.5 Movimiento impulsivo
Lo más sencillo es utilizar las ecuaciones de Lagrange impulsivas. Tenemos tres grados de libertad
El sistema parte del reposo, por tanto
Para la coordenada z
Para la coordenada θ
Para la coordenada φ
porque .
La percusión se aplica en el extremo B de la barra. Necesitamos la velocidad absoluta de ese punto
Hemos usado que
Las fuerzas generalizadas son
Aplicando las ecuaciones de Lagrange impulsivas tenemos
Estos son las condiciones iniciales del movimiento ulterior de la barra después de la percusión.