Entrar Página Discusión Historial Go to the site toolbox

Coeficientes de capacidad

De Laplace

Si no hay densidad de carga volumétrica, las cargas almacenadas en los distintos conductores forman una combinación lineal de los potenciales respectivos

Q_i = \sum_j C_{ik}V_k\,

siendo los Cik los coeficientes de capacidad.

Estas relaciones pueden expresarse en forma matricial

\mathbf{Q}=\mathbf{\mathsf{C}}{\cdot}\mathbf{V}

siendo \mathbf{Q} y \mathbf{V} dos vectores columna y \mathbf{\mathsf{C}} una matriz cuadrada simétrica y definida positiva.

Los coeficientes de capacidad verifican

C_{ii}> 0\,    C_{ik}\leq 0    (i\neq k)

Capacidad de un conductor

Artículo completo: Capacidad de un conductor

En el caso particular de un solo conductor, la expresión se reduce a

Q = C V\,

con C la capacidad del conductor, medida en faradios (F). Como caso particular, para una esfera de radio R

C = 4\pi\varepsilon_0 R

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace