Entrar Página Discusión Historial Go to the site toolbox

Ecuación de estado

De Laplace

Contenido

1 Enunciado

Utilizando la ecuación de estado de los gases ideales, responda a las siguientes preguntas

  1. ¿Que volumen ocupa un mol de gas en condiciones estándar?
  2. ¿Cuantas moléculas hay en 1\,\mathrm{cm^3} de gas ideal a una temperatura de 300 K y a una presión de 1 atm?

¿Y si la presión es de 10^{-8}\,\mathrm{torr}?

2 Volumen de un mol de gas en condiciones estándar

Las condiciones estándar son una presión de 1 atm y una temperatura de 0o C. A partir de la ecuación de estado de los gases ideales obtenemos


\displaystyle V = \frac{nRT}{P}=\frac{1\times8.31\times273.15}{1}\mathrm{\frac{mol\,J\,K}{mol\,K\,atm}}
\mathrm{\frac{1\,atm}{101325\,Pa}}=22.4\,\mathrm{l}

Hay que recordar siempre que la temperatura de la ecuación de estado del gas ideal es absoluta, es decir, hay que expresarl en Kelvin.

También es habitual encontrar la referencia a condiciones normales. Esto quiere decir una presión de 1 atm y una temperatura de 25o C. En el caso de condiciones normales el volumen ocupado por un mol de gas ideal es


\displaystyle V = \frac{nRT}{P}=\frac{1\times8.31\times298.15}{1}\mathrm{\frac{mol\,J\,K}{mol\,K\,atm}}
\mathrm{\frac{1\,atm}{101325\,Pa}}=24.5\,\mathrm{l}

3 Numero de moléculas

Podemos calcular el número de moles en las condiciones dadas por el enunciado. Usando la ecuación de estado obtenemos


\displaystyle n=\frac{PV}{RT}=\frac{1\times 1}{0.082\times300}\mathrm{\frac{atm\,cm^3\,mol\,K}{atm\,l\,K}}
\mathrm{\frac{1\,l}{10^3cm^3}}=4.07\times10^{-5}\,\mathrm{mol}

En 1 mol hay NA moléculas, Entonces el número de moléculas total es


N=nN_A=2.45\times10^{19}\,\mathrm{molec.}

Para hacerse una idea de lo grande que es este número, imaginemos que contamos las moléculas de modo que empleamos 1 ms en contabilizar cada una de ellas. El tiempo total que emplearíamos sería


T=10^{-3}N=2.45\times10^{16}\,\mathrm{seg}=7.77\times10^{8}\,\mathrm{a\tilde{n}os}

La edad estimada del Universo es de 15000 millones de años, es decir 1.5\times10^{10}años

Si la presión es de sólo 10 − 8 torr el número de moléculas es menor. Expresando la presión en atmósferas tenemos


P=10^{-8}\,\mathrm{torr\frac{1\,atm}{760\,torr}}=1.32\times10^{-11}\,\mathrm{atm}

El número de moléculas sería


N = N_A\frac{PV}{RT}=3.23\times10^8\,\mathrm{molec.}

Sigue siendo un número muy grande, aunque la presión sea muy baja. Si las contamos con el procedimiento anterior tardaríamos un tiempo


T=10^{-3}N=3.23\times10^5\,\mathrm{seg}=3.74\,\mathrm{dias}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace