Entrar Página Discusión Historial Go to the site toolbox

Percusión sobre una barra con resorte

De Laplace

Revisión a fecha de 22:41 13 oct 2020; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Enunciado

Se tiene un sistema formado por una varilla de masa m=1.2\,\mathrm{kg} y longitud b=1\,\mathrm{m}, apoyada sin rozamiento en una pared vertical y un suelo horizontal. El extremo B, apoyado en la pared está conectado a la esquina mediante un resorte de constante k=30\,\mathrm{N}/\mathrm{m} y longitud natural \ell_0=1\,\mathrm{m}. Por efecto de la gravedad (tómese g=10\,\mathrm{m}/\mathrm{s}^2) la varilla resbala hasta que la compresión del resorte la detiene.

  1. Determine la posición de los extremos A y B de la barra en la posición de equilibrio.
  2. Suponiendo que se encuentra en la posición de equilibrio, se efectúa sobre la barra una percusión horizontal en un punto C a una altura h=20\,\mathrm{cm} y de magnitud \vec{P}_C=-1.5\,\vec{\imath}\,\mathrm{N}\cdot\mathrm{s}. Calcule la velocidad del centro de masas inmediatamente después de la percusión, así como las percusiones de reacción en la pared y el suelo.
  3. Tras la percusión anterior, la varilla se acerca a la pared. Calcule la velocidad del centro de masas de la varilla en el momento en que impacta con la pared.

2 Posición de equilibrio

3 Efecto de la percusión

4 Impacto con la pared

5 Tratamiento mediante dinámica analítica

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace