Problemas de electrostática en el vacío (GIOI)
De Laplace
Revisión a fecha de 13:55 13 feb 2020; Antonio (Discusión | contribuciones)
1 Carga total de una distribución
Calcule la carga total de las siguientes distribuciones de carga:
-
N cargas de valor q situadas en los vértices de un polígono regular de N lados situado en el plano XY, con centro el origen y cuyo primer vértice se encuentra en
.
-
Un anillo circular de radio R con una densidad lineal de carga uniforme λ0.
-
Un anillo circular de radio R con centro el origen y situado en el plano XY, con una densidad lineal de carga λ(θ) = λ0cos(θ), siendo θ el ángulo del vector de posición con el eje OX.
-
Una superficie esférica de radio a con una densidad de carga uniforme σ0, rodeada por una superficie esférica concéntrica de radio b con densidad de carga − σ0.
-
Una esfera maciza de radio R con densidad de carga uniforme ρ0.
-
Una esfera maciza de radio 2R con una densidad de carga dependiente de la distancia al centro como ρ(r) = A(R − r) (r < 2R).
2 Cargas en un triángulo equilátero
Tres cargas puntuales iguales +q se hallan en los vértices de un triángulo equilátero de lado b. Calcule la fuerza eléctrica sobre cada una de ellas.
Suponga que se cambia una de las cargas +q por una carga –q. ¿Cuánto vale en ese caso la fuerza sobre cada una de las tres cargas?
Si se cambia una segunda carga +q por otra carga –q, ¿cuánto pasa a ser la fuerza sobre cada una?
Por último, si se sustituye la última carga +q por otra –q, ¿cuál es ahora la fuerza?
Solución
3 Fuerzas y momentos sobre un par de cargas
Dos cargas q1 = + q y q2 = − q se encuentran en los extremos de una varilla que se encuentra inmersa en el campo eléctrico
![\vec{E}=Ay\vec{\imath}+Bx^2 \vec{\jmath}](/wiki/images/math/5/6/0/5603c4e2982700ebc8a08818bb553787.png)
- Si los extremos de la varilla se encuentran en
y
, ¿cuál es el efecto del campo sobre el sistema?
- Si los extremos de la varilla se encuentran en
y
, ¿cuál es el efecto del campo sobre el sistema?