Entrar Página Discusión Historial Go to the site toolbox

Velocidad de una partícula (CMR)

De Laplace

Contenido

1 Definición

Se define la velocidad media en un intervalo de tiempo como el cociente entre el desplazamiento realizado y el intervalo de tiempo empleado en realizarlo.

\vec{v}_m=\frac{\Delta\vec{r}}{\Delta t}=\frac{\vec{r}_2-\vec{r}_1}{t_2-t_1}

La velocidad instantánea de la partícula es el límite de la velocidad media cuando el intervalo de tiempo es muy pequeño

\vec{v}=\lim_{\Delta t\to 0}\frac{\Delta\vec{r}}{\Delta t} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}

Es decir, la velocidad instantánea es la derivada de la posición respecto al tiempo. En Física, las derivadas respecto al tiempo suelen representarse con un punto sobre la magnitud

\vec{v}= \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\dot{\vec{r}}

Si conocemos la velocidad instantánea a lo largo de un intervalo podemos calcular la posición como función del tiempo

\vec{r}(t)=\vec{r}_0+\int_0^t \vec{v}\,\mathrm{d}t

2 Vector tangente

El vector velocidad va en la dirección tangente a la trayectoria. Esto permite definir el unitario tangente

\vec{T}=\frac{\vec{v}}{\left|\vec{v}\right|}\qquad\Rightarrow\qquad \vec{v}=\left|\vec{v}\right| \vec{T}

3 Rapidez y distancia recorrida

Al módulo de la velocidad se lo denomina rapidez o celeridad de la partícula. Mide el ritmo con el que se recorre la trayectoria y como tal se relaciona directamente con el parámetro arco

\left|\vec{v}\right|= \left|\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}\right|=  \frac{\left|\mathrm{d}\vec{r}\right|}{\mathrm{d}t}=\frac{\mathrm{d}s}{\mathrm{d}t}=\dot{s}

Esto permite determinar la distancia recorrida en un intervalo de tiempo dado

s = s_0+\int_0^t \left|\vec{v}\right|\,\mathrm{d}t

4 Componentes de la velocidad

En un sistema de referencia fijo, los vectores de la base cartesiana son constantes, por lo que

\vec{v}=\dot{\vec{r}}=\dot{x}\vec{\imath}+\dot{y}\vec{\jmath}+\dot{z}\vec{k}

es decir, las componentes de la velocidad son las derivadas de las componentes de la posición.

5 Velocidad en función de parámetros

Si la posición no está dada explícitamente en función del tiempo, sino que conocemos la trayectoria en función de un parámetro θ para hallar la velocidad es preciso aplicar la regla de la cadena

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}\,\frac{\mathrm{d}\theta}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}\,\dot{\theta}

A menudo, la posición no se indica en función de las coordenadas cartesianas, sino como función de 2 o más variables, θ, φ… (denominadas coordenadas generalizadas). En ese caso, se extiende la expresión anterior

\vec{v}=\frac{\partial\vec{r}}{\partial \theta}\, \dot{\theta}+\frac{\partial\vec{r}}{\partial \varphi}\, \dot{\varphi}+\cdots

Si denominamos a las diferentes variables como q_k\ (k=1,2,\ldots) la expresión anterior se escribe

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\sum_k \frac{\partial\vec{r}}{\partial q_k}\dot{q}_k

En ocasiones, la posición se expresa como función del tiempo y de una variable (dependiente implícitamente del tiempo). En ese caso, aplicamos que la derivada del tiempo respecto a sí mismo vale 1 (la velocidad del tiempo es un segundo por segundo) y queda

\vec{r}=\vec{r}(\theta,t)\qquad\Rightarrow\qquad \vec{v}= \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\frac{\partial\vec{r}}{\partial \theta}\, \dot{\theta}+\frac{\partial\vec{r}}{\partial t}

Nótese la diferencia entre la derivada total (d) y la parcial (\partial).

Si depende de varias variables y del tiempo queda la fórmula general

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\sum_k \frac{\partial\vec{r}}{\partial q_k}\dot{q}_k+\frac{\partial\vec{r}}{\partial t}

6 Velocidad en polares, cilíndricas y esféricas

6.1 Coordenadas cilíndricas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace