Oscilador amortiguado
De Laplace
Revisión a fecha de 20:40 8 feb 2009; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
Un oscilador amortiguado experimenta una fuerza de rozamiento viscoso , de forma que su ecuación de movimiento, para un movimiento unidimensional es
- Demuestre que la energía mecánica
es una función decreciente con el tiempo. - Si buscamos una solución particular de la forma x = Ae − λt, calcule los dos valores que puede tener λ. La solución general será una combinación de las dos posibilidades:
con A1 y A2 dos constantes a determinar mediante las condiciones iniciales. - ¿Cuál es el máximo valor de b para que haya oscilaciones? ¿cómo es el movimiento si b supera ese valor?
- Considere el caso particular de una partícula de masa se encuentra sujeta a un muelle de constante , existiendo un rozamiento b. Determine la posición en cualquier instante si se impulsa desde la posición de equilibrio con velocidad si (a) $; (b) , (c) .
2 Solución
2.1 Disipación de la energía
Para ver que en presencia de rozamiento la energía mecánica se va perdiendo progresivamente, simplemente calculamos la derivada de la energía respecto al tiempo, para ver su signo.
Aplicando el mismo método que en el caso sin rozamiento
De acuerdo con al ecuación de movimiento para el oscilador armónico con rozamiento
así que nos queda
Esta cantidad siempre es negativa, por lo que la energía es una función que decrece de forma continuada. El decrecimiento no es constante. Se anula en los puntos de retorno (en los que la velocidad es cero) y es máximo cuando lo es la velocidad.