Solución general del MAS
De Laplace
Revisión a fecha de 22:13 6 feb 2009; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
La solución general de la ecuación de movimiento

es de la forma


con a y b dos constantes dependientes de las condiciones iniciales.
- Halle el valor de las constantes a y b si la posición inicial de la partícula es x0 y su velocidad inicial es v0.
- Demuestre que la ecuación horaria
es también solución de la misma ecuación de movimiento. Empleando relaciones trigonométricas, deduzca la relación entre las constantes {A,φ} y las constantes {a,b}. Exprese A y φ en función de la posición y la velocidad iniciales, x0 y v0.
- Calcule la velocidad de la partícula para cualquier instante en función de la posición y velocidad iniciales.
- Demuestre que la cantidad E = mv2 / 2 + kx2 / 2 no depende del tiempo. ¿Cuánto vale en función de las condiciones iniciales?
- Demuestre que x = ejωt, con
, la unidad imaginaria, es una solución particular de la ecuación de movimiento. Aplicando los resultados anteriores, demuestre la relación
