Entrar Página Discusión Historial Go to the site toolbox

No Boletín - Rectilíneo con aceleración creciente (Ex.Oct/13)

De Laplace

1 Enunciado

Una partícula, inicialmente en reposo en el origen de coordenadas, se mueve con una aceleración creciente en el tiempo según la fórmula:


\vec{a}(t)=3C t^2\,\vec{\jmath}

siendo C\, una constante de valor igual a 1\,\mathrm{m/s}^4\,. ¿A qué distancia del origen de coordenadas se hallará la partícula en el instante t=2\,\mathrm{s}\,?

2 Solución

Conforme a las definiciones de velocidad instantánea y aceleración instantánea, podemos escribir:

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=3C t^2\,\vec{\jmath}\,\,\,\,\,\, (\mathrm{para}\,\, t>0)

Conocemos también las condiciones iniciales de posición y velocidad:

\vec{r}(0)=\vec{0}\,\mathrm{m}\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \vec{v}(0)=\vec{0}\,\mathrm{m/s}

Por tanto, determinar la velocidad y la posición de la partícula para t>0\, se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:


\begin{array}{l}\displaystyle\\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=3C t^2\,\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}\vec{v}=3\,C t^2\,\mathrm{d}t\,\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{\vec{v}(0)}^{\vec{v}(t)}\!\mathrm{d}\vec{v}=3\,C\left(\int_{0}^{t}\!t^2\,\mathrm{d}t\right)\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\vec{v}(t)=Ct^3\,\vec{\jmath} \\ \\
\displaystyle\\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=Ct^3\,\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}\vec{r}=Ct^3\,\mathrm{d}t\,\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{\vec{r}(0)}^{\vec{r}(t)}\!\mathrm{d}\vec{r}=C\left(\int_{0}^{t}\!t^3\,\mathrm{d}t\right)\vec{\jmath}\,\,\,\,\,\longrightarrow\,\,\,\,\,\vec{r}(t)=\displaystyle\frac{Ct^4}{4}\,\vec{\jmath}\end{array}
\frac{\mathrm{d}x}{\mathrm{d}t}=v_x(0)-\frac{1}{2}Kt^2\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}x=\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{x(0)}^{x(t)}\!\mathrm{d}x=\int_{0}^{t}\!\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,x(t)=x(0)+v_x(0)t-\frac{1}{6}Kt^3

Observamos que se trata de un movimiento con velocidad inicial nula (inicialmente en reposo) y con una aceleración de módulo variable en el tiempo pero de dirección y sentido constantes. Es fácil comprender entonces que el movimiento es rectilíneo (ya que la velocidad Se trata de un movimiento rectilíneo a lo largo del eje OX. Por tanto, podemos escribir:

\vec{r}=x\,\vec{\imath}\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \vec{v}=v_x\,\vec{\imath}=\dot{x}\,\vec{\imath}\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \vec{a}=a_x\,\vec{\imath}=\dot{v}_x\,\vec{\imath}=\ddot{x}\,\vec{\imath}=-Kt\,\vec{\imath}\,\,\,\,\,\, (\mathrm{para}\,\, t>0)

Considerando por simplicidad que el origen de coordenadas coincide con la posición de la partícula en el instante en que se detecta el obstáculo (t=0)\,, conocemos también las condiciones iniciales:

x(0)=0\,\mathrm{m}\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, v_x(0)=\dot{x}(0)=25\,\mathrm{m}/\mathrm{s}

Por tanto, determinar la velocidad y la posición de la partícula para t>0\, se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:

\frac{\mathrm{d}v_x}{\mathrm{d}t}=-Kt\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}v_x=-Kt\,\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{v_x(0)}^{v_x(t)}\!\mathrm{d}v_x=-K\!\int_{0}^{t}\!t\,\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,v_x(t)=v_x(0)-\frac{1}{2}Kt^2


\frac{\mathrm{d}x}{\mathrm{d}t}=v_x(0)-\frac{1}{2}Kt^2\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}x=\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{x(0)}^{x(t)}\!\mathrm{d}x=\int_{0}^{t}\!\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,x(t)=x(0)+v_x(0)t-\frac{1}{6}Kt^3

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace