Entrar Página Discusión Historial Go to the site toolbox

Máquina de Atwood simple

De Laplace

Revisión a fecha de 22:03 14 nov 2013; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

1 Enunciado

2 Solución

Una de las aplicaciones de las tensiones de hilos es el de la máquina de Atwood, formada por dos masas m1 y m2 unidas por un hilo ideal que pasa por una polea también ideal. Cuando se liberan estas masas, la más pesada tira de las más ligera y comienzan a moverse aceleradamente. La cuestión es calcular con qué aceleración lo hacen.

Para la masa m1, las fuerzas que actúan sobre ella son su peso y la tensión del hilo, de forma que

m_1\vec{a}_1 = m_1\vec{g}+\vec{T}_1

Puesto que todas las fuerzas son verticales, podemos usar cantidades escalares

\vec{a}_1 =a \vec{k}\qquad \vec{T}_1=T\vec{k}\qquad\vec{g}=-g\vec{k}

y queda

m_1 a = -m_1g+T\,

Haciendo los mismo para la segunda masa

m_2\vec{a}_2 = m_2\vec{g}+\vec{T}_2

Por ser la cuerda inextensible, la aceleración con la que se estira por un lado debe ser exactamente igual que con la que se recoge por otro.

x_1 + x_2 +\pi R = L=\mathrm{cte}\qquad\Rightarrow\qquad v_1+v_2 = 0\qquad\Rightarrow\qquad a_2=-a_1=-a

Por otro lado, como el módulo de la tensión del hilo es el mismo a lo largo de todos sus puntos

\vec{a}_2 = -a\vec{k}\qquad \vec{T}_2 = T\vec{k}

lo que nos da la ecuación escalar

-m_2a = -m_2g + T\,
Restando las dos ecuaciones obtenemos la aceleración
(m_1+m_2)a = (m_2-m_1)g\qquad\Rightarrow\qquad a = \frac{m_2-m_1}{m_2+m_1}g

y si queremos la tensión del hilo

T = m_1(a+g) = \frac{2m_1m_2}{m_1+m_2}g

La fuerza sobre la polea la da en que está sometida a la tensión que tira de ella por sus dos extremos

\vec{F}=-\vec{T}_1-\vec{T}_2 = -2T\vec{k}=-\frac{4m_1m_2}{m_1+m_2}g\vec{k}

Vemos que no es simplemente igual al peso de las dos masas, sino que influye el que éstas estén aceleradas. Esta fuerza debe ser contrarrestada por el anclaje de la polea, que debe ejercer una fuerza igual y de sentido contrario \vec{F}_\mathrm{ext}=-\vec{F}.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace