Propiedades de un sistema de tres partículas
De Laplace
Contenido |
1 Enunciado
Considere un sistema de tres partículas de masas , , que en un instante dado están situadas en las posiciones de la figura y moviéndose con la velocidad indicada, siendo la rapidez de cada una de ellas . Suponga que la masa 1 y la 3 está unidas por un resorte de longitud natural nula y constante . Para el instante indicado
- Halle la posición del centro de masas (CM) del sistema.
- Calcule la cantidad de movimiento del sistema.
- Halle el momento cinético respecto al origen y respecto al CM.
- Calcule la energía cinética del sistema respecto a un sistema fijo y respecto al CM.
- Halle la aceleración de cada masa y la del CM.
- Halle la derivada respecto al tiempo del momento cinético (calculado respecto al origen).
- Calcule la derivada respecto al tiempo de la energía cinética del sistema (calculada respecto a un sistema fijo).
2 Posición del centro de masas
La posición del centro de masas (CM) es la media ponderada de las tres posiciones
Sustituyendo los diferentes valores
3 Cantidad de movimiento
La cantidad de movimiento de un sistema es la suma de la de cada una de las partículas que lo componen
y su valor en este caso es
A partir de la cantidad de movimiento podemos hallar la velocidad del CM dividiendo por la masa total
\vec{v}_C = \frac{\vec{p}{M}=\left(\frac{-2000\vec{\imath}}{400}\right)\frac{\mathrm{cm}}{\mathrm{s}}= \left(-5\vec{\imath}\right)\frac{\mathrm{cm}}{\mathrm{s}}