Entrar Página Discusión Historial Go to the site toolbox

6.4. Disco rodando en pared (Ex.Sep/12)

De Laplace

Contenido

1 Enunciado

El plano vertical fijo O_1X_1Y_1\, (sólido "1") de la figura contiene en todo instante a dos sólidos vinculados entre sí y en movimiento: un disco de radio R\, (sólido "2"), y una barra BC\, de longitud L\, (sólido "0"). El disco rueda sin deslizar sobre el eje vertical O_1Y_1\,, avanzando su centro C\, con velocidad constante \vec{v}^{\, C}_{21}(t)=v_0\,\vec{\jmath}_1\,. Y, como consecuencia, también la barra se mueve, ya que su extremo C\, está articulado al centro del disco, mientras que su extremo B\, está articulado a un deslizador que lo obliga a recorrer el eje O_1X_1\,.

Como parámetro descriptivo de la posición del sistema, se define el ángulo \theta\, que forma la barra BC\, con respecto a la vertical (ver figura). Se pide:

  1. Determinar gráficamente la posición de los tres centros instantáneos de rotación: I_{21}\,, I_{20}\, e I_{01}\,.
  2. Calcular todas las velocidades angulares en función de la posición, es decir: \vec{\omega}_{21}(\theta)\,, \vec{\omega}_{01}(\theta)\, y \vec{\omega}_{20}(\theta)\,.
  3. Calcular las aceleraciones \vec{a}^{\, C}_{01}\, y \vec{a}^{A}_{21}\, (ver A\, en la figura).

2 Determinación gráfica de los centros instantáneos de rotación

3 Velocidades angulares en función de la posición

4 Aceleraciones pedidas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace