Entrar Página Discusión Historial Go to the site toolbox

No Temario - Ejemplo de estimación de magnitudes

De Laplace

Revisión a fecha de 22:23 17 sep 2012; Enrique (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Enunciado

Se tiene un bloque de hierro (\rho_\mathrm{Fe}=7874\,\mathrm{kg}/\mathrm{m}^3) de forma cúbica cuya masa es aproximadamente 2.5 kg. Estime el valor de la arista del cubo, así como su superficie lateral.

Si se sabe que el margen de error de la medida de la masa es de 100 g, ¿entre qué valores se hallarán la arista y el área lateral?

2 Arista

El volumen de un cubo es la arista al cubo, por tanto

L = V^{1/3} = \left(\frac{M}{\rho}\right)^{1/3}

Sustituyendo los valores de la masa y la densidad quedaría

L = 0.06822049496849\ldots\,\mathrm{m}

Sin embargo, no es lógico un resultado con tantos decimales, cuando de los datos del problema, la densidad se da con 4 cifras significativas y la masa solo con 2. Si no sabemos la tercera cifra significativa de la masa, ¿cómo podemos esperar conocer la 12ª de la arista? Siendo coherentes, debemos mantener el número de cifras significativas en el menor de los de los datos (2, en este caso), por lo que

L = 0.068\,\mathrm{m} = 6.8\,\mathrm{cm}

3 Área lateral

El área lateral es la de seis cuadrados de lado L o, directamente en función del volumen

S = 6V^{2/3} = 6\left(\frac{M}{\rho}\right)^{2/3} = 0.027924\ldots\mathrm{m}^2 = 0.028\,\mathrm{m}^2

donde de nuevo hemos redondeado a 2 cifras significativas. En cm²

S = 280\,\mathrm{cm}^2

Obsérvese que el número de cifras significativas sigue siendo 2, aunque ahora la cantidad tiene tres dígitos.

4 Incertidumbres

Una mejor estimación de la expresión correcta lo obtenemos si conocemos la incertidumbre de la medida original, la cual se expresa mediante las bandas de error, de forma que

M = (2.5\pm 0.1)\,\mathrm{kg}

esto es, que el valor de la masa verifica, con gran probabilidad,

2.4\,\mathrm{kg} < M < 2.6\,\mathrm{kg}

Tomando los valores extremos de este intervalo obtenemos el intervalo para la longitud

0.0672985\,\mathrm{m} < L < 0.0691182\,\mathrm{m}

con lo que vemos que efectivamente tenemos una incertidumbre en la segunda cifra significativa (el tercer decimal). Por ello se expresará mejor como

0.067\,\mathrm{m} < L < 0.069\,\mathrm{m}

Operando igualmente para el área lateral

0.0271745\,\mathrm{m}^2 < S < 0.028664\,\mathrm{m}^2

lo que se expresa, redondeando hasta la primera cifra incierta

0.027\,\mathrm{m}^2 < S < 0.029\,\mathrm{m}^2


Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace