Entrar Página Discusión Historial Go to the site toolbox

1.3. Lados de un triángulo rectángulo (Ex.Nov/11)

De Laplace

1 Enunciado

¿Cuál de las siguientes ternas de vectores libres podría corresponder a los tres lados de un triángulo rectángulo?

1) \,\,\,\vec{a}=(-\vec{\imath}+4\,\vec{\jmath}+\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(2\,\vec{\imath}+\vec{\jmath}+\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(-\vec{\imath}-5\,\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m}\,

2) \,\,\,\vec{a}=(3\,\vec{\imath}+2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(2\,\vec{\imath}-3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(5\,\vec{\imath}+\vec{k}\,)\,\mathrm{m}\,

3) \,\,\,\vec{a}=(\vec{\imath}-2\,\vec{\jmath}+3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(-2\,\vec{\imath}+3\,\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(-\vec{\imath}+\vec{\jmath}+\vec{k}\,)\,\mathrm{m}\,

4) \,\,\,\vec{a}=(3\,\vec{\jmath}+3\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{b}=(\vec{\imath}+2\,\vec{\jmath}+2\,\vec{k}\,)\,\mathrm{m;}\,\,\,\,\,
\vec{c}=(2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m}\,

2 Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace