Entrar Página Discusión Historial Go to the site toolbox

Derivada de un vector (G.I.C.)

De Laplace

Revisión a fecha de 16:50 7 oct 2011; Pedro (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Enunciado

Un punto recorre una circunferencia de radio R, de modo que en cada instante el vector que une el centro de la circunferencia con el punto forma un ángulo α con el eje OX.

  1. Encuentra la expresión del vector de posición del punto en función del ángulo α.
  2. Encuentra la expresión del vector de posición del punto en función del ángulo α.
  3. Si el ángulo α depende del tiempo como α = ωt, calcula la derivada del vector de posición respecto del tiempo.

2 Solución

2.1 Vector en función del ángulo α

Proyectamos el vector de posición sobre los ejes OX y OY


\vec{r}(\alpha) = R\cos\alpha\,\vec{\imath} + R\,\mathrm{sen}\,\alpha\,\vec{\jmath}

También podemos escribir el vector en términos de sus componentes cartesianas


\vec{r}(\alpha) \equiv
\left\{
\begin{array}{l}
x = R\cos\alpha \\
\\
y = R\,\mathrm{sen}\,\alpha \\
\\
z=0
\end{array}
\right.

2.2 Derivada del vector respecto de α

Los vectores de la base cartesiana no cambian cuando el ángulo α varía. Así pues, la derivada del vector \vec{r}(\alpha) es el vector


\dfrac{\mathrm{d}\vec{r}}{\mathrm{d}\alpha} =
\dfrac{\mathrm{d}x}{\mathrm{d}\alpha}\,\vec{\imath} +
\dfrac{\mathrm{d}y}{\mathrm{d}\alpha}\,\vec{\jmath} +
\dfrac{\mathrm{d}z}{\mathrm{d}\alpha}\,\vec{k} =
-R\,\mathrm{sen}\alpha\,\vec{\imath} + R\cos\alpha\,\vec{\jmath}

2.3 Derivada respecto al tiempo

Ahora el ángulo α es una función del tiempo

α(t) = ωt

Aplicamos la regla de la cadena


\dfrac{\mathrm{d}\vec{r}}{\mathrm{d}t} =
\left( \dfrac{\mathrm{d}\vec{r}}{\mathrm{d}\alpha} \right)
\left(\dfrac{\mathrm{d}\alpha}{\mathrm{d}t} \right)

Tenemos


\dfrac{\mathrm{d}\alpha}{\mathrm{d}t} = \omega

Por tanto


\dfrac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \omega\,\left( \dfrac{\mathrm{d}\vec{r}}{\mathrm{d}\alpha} \right)
=
-R\,\omega\,\mathrm{sen}(\omega t)\,\vec{\imath} + R\,\omega\cos(\omega t)\,\vec{\jmath}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace