Entrar Página Discusión Historial Go to the site toolbox

Tabla de derivadas y primitivas

De Laplace

Contenido

1 Reglas de derivación

Suma de funciones
\frac{\mathrm{d}\ }{\mathrm{d}x}(u+v) = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}
Producto de funciones
\frac{\mathrm{d}\ }{\mathrm{d}x}(uv) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)v + u\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)

Caso particular u = C = cte

\frac{\mathrm{d}\ }{\mathrm{d}x}(Cv) = C\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)
Regla de la cadena
\frac{\mathrm{d}v}{\mathrm{d}x}=\frac{\mathrm{d}v}{\mathrm{d}u}\,\frac{\mathrm{d}u}{\mathrm{d}x}

Caso particular de derivada logarítmica

\frac{\mathrm{d}\ }{\mathrm{d}x}(\ln(u)) = \frac{1}{u}\,\frac{\mathrm{d}u}{\mathrm{d}x}

Caso particular de exponencial de una función

\frac{\mathrm{d}\ }{\mathrm{d}x}\left(\mathrm{e}^u\right) = \mathrm{e}^u\,\frac{\mathrm{d}u}{\mathrm{d}x}

2 Tabla de derivadas

f(x) df / dx f(x) df / dx
C\, 0\, \ln(x)\, \frac{1}{x}
x\, 1\, \mathrm{sen}(x)\, \cos(x)\,
x^2\, 2x\, \cos(x)\, -\mathrm{sen}(x)\,
\frac{1}{x} -\frac{1}{x^2} \mathrm{tg}(x)\, \frac{1}{\cos^2(x)}
x^n\, nx^{n-1}\, \mathrm{arcsen}(x)\, \displaystyle\frac{1}{\sqrt{1-x^2}}
\mathrm{e}^x\, \mathrm{e}^x\, \mathrm{arccos}(x)\, \displaystyle -\frac{1}{\sqrt{1-x^2}}
\mathrm{a}^x\, \ln(a)\,\mathrm{a}^x \mathrm{arctg}(x)\, \displaystyle\frac{1}{1+x^2}

3 Tabla de primitivas

f(x) \int f\,\mathrm{d}x f(x) \int f\,\mathrm{d}x
C\, Cx\, \mathrm{sen}(x)\, -\cos(x)\,
x\, \frac{x^2}{2}\, \cos(x)\, \mathrm{sen}(x)\,
\frac{1}{x}\, \ln|x|\, \mathrm{tg}(x)\, -\ln(\cos(x))\,
x^n \quad (n\neq -1) \frac{x^{n+1}}{n+1} \frac{1}{\mathrm{sen}(x)} \ln\left|\mathrm{tg}\left(\frac{x}{2}\right)\right|
\mathrm{e}^x\, \mathrm{e}^x\, \frac{1}{1+x^2} \mathrm{tg}(x)\,
\mathrm{e}^{\lambda x}\, \frac{1}{\lambda}\mathrm{e}^{\lambda x}\, \displaystyle\frac{1}{\sqrt{1-x^2}} \mathrm{arcsen}(x)\,

Más integrales en la Wikipedia

4 Series de Taylor

\frac{1}{1-x}=1+x+x^2+x^3+\cdots = \sum_{n=0}^\infty x^n
\frac{1}{(1-x)^2}=1+2x+3x^2+4x^3+\cdots = \sum_{n=0}^\infty (n+1)x^n
-\ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots = \sum_{n=1}^\infty \frac{x^n}{n}
\mathrm{e}^x=1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\cdots = \sum_{n=0}^\infty \frac{x^n}{n!}
cos(x)=1-\frac{x^2}{2}+\frac{x^4}{4!}+\cdots = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}
\mathrm{sen}(x)=x-\frac{x^3}{6}+\frac{x^5}{5!}+\cdots = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!}
\mathrm{arctg}(x)=x-\frac{x^3}{3}+\frac{x^5}{5}+\cdots = \sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{2n+1}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace