Espira cuadrada en torno a solenoide
De Laplace
Revisión a fecha de 09:34 17 jun 2008; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
Una espira cuadrada de lado b, de resistencia R y autoinducción despreciable rodea concéntricamente a un solenoide circular largo, de radio a, de longitud h (

- Sabiendo que el campo magnético en el interior del solenoide es aproximadamente uniforme, calcule la corriente que circula por la espira cuadrada como función del tiempo.
- Halle la carga que pasa por un punto de la espira durante todo el periodo t > 0.
- Halle la potencia instantánea disipada por efecto Joule en la espira, así como la energía total disipada en el periodo t > 0.
- Suponga ahora la misma situación descrita anteriormente, pero considere que la espira posee una autoinducción no despreciable L y que inicialmente no circula corriente por ella. Para t > 0 la corriente que pasa por la espira es de la forma

- Calcule las constantes C y D, así como la carga que pasa por un punto de la espira en el periodo t > 0 y la energía total disipada en el mismo periodo.
2 Solución
2.1 Corriente que circula por la espira
El campo magnético producido por un solenoide circular largo es
