Entrar Página Discusión Historial Go to the site toolbox

5.7. Movimiento relativo de dos ventiladores

De Laplace

Contenido

1 Enunciado

Sobre dos paredes perpendiculares, se han colocado sendos ventiladores planos (sólidos “0” y “2”) de orientación fija, ambos a la misma altura, y con sus respectivos centros (A y B) equidistantes (distancia L) de la esquina (punto O). Los dos ventiladores rotan con velocidad angular de módulo constante igual a ω, si bien lo hacen con las orientaciones y sentidos respectivamente indicados en la figura. Definido el triedro fijo OXYZ (sólido “1”) del esquema, y considerando, como movimiento-problema, el movimiento relativo entre ambos ventiladores (movimiento {20}), determine

  1. \vec{\omega}_{20} y \vec{\alpha}_{20}
  2. \vec{v}^{O}_{20} y \vec{a}^{O}_{20};
  3. El eje instantáneo de rotación (E.I.R.) del movimiento {20}.
Archivo:ventiladores-enfrentados.png

Nota: Se recomienda la utilización del triedro “1” para la descomposición del movimiento-problema, así como el uso de su base vectorial para resolver el ejercicio.

2 Velocidad y aceleración angular

2.1 Velocidad angular

En este caso tenemos la descomposición

20 = 21 + 10

La velocidad angular es la suma de las de los dos movimientos relativos

\vec{\omega}_{20}=\vec{\omega}_{21}+\vec{\omega}_{10}

La velocidad angular del movimiento {21} va en la dirección del eje OX

\vec{\omega}_{21}=\omega\vec{\imath}

La del movimiento {10} es igual en magnitud, y de sentido opuesto a la del movimiento {01}, que es el dato que se nos da

\vec{\omega}_{10}=-\vec{\omega}_{01}=-(-\omega\vec{\jmath})=\omega\vec{\jmath}

por lo que la velocidad angular absoluta vale

\vec{\omega}_{20} = \vec{\omega}_{21}+\vec{\omega}_{10}=\omega(\vec{\imath}+\vec{\jmath})

2.2 Aceleración angular

Para las aceleraciones angulares tenemos la ley de composición

\vec{\alpha}_{20}=\vec{\alpha}_{21}+\vec{\alpha}_{10}+\vec{\omega}_{10}\times\vec{\omega}_{21}

La aceleración angular del movimiento {21} es nula, por ser una rotación con velocidad angular constante

\vec{\alpha}_{21}=\vec{0}

Lo mismo ocurre con la del movimiento {10}, ya que en este movimiento, el ventilador 0 “ve” al sistema “1” rotar con velocidad angular constante alrededor de un eje fijo

\vec{\alpha}_{10}=\vec{0}

Las velocidades angulares que aparecen en el último término son vectores ya conocidos, por lo que

\vec{\alpha}_{20}=\vec{\omega}_{10}\times\vec{\omega}_{21}=(-\omega\vec{\jmath})\times(\omega\vec{\imath})=\omega^2\vec{k}

3 Velocidad y aceleración

3.1 Velocidad

La velocidad del punto O en el movimiento {20} se puede descomponer como

\vec{v}^O_{20}=\vec{v}^O_{21}+\vec{v}^O_{10}

La velocidad de O en el movimiento {21} es la de una rotación en torno a un eje que pasa por B

\vec{v}^O_{21}=\vec{\omega}_{21}\times\overrightarrow{BO}=(\omega\vec{\imath})\times(-L\vec{\jmath})=-L\omega\vec{k}

La velocidad del mismo punto en el movimiento {10} es otra rotación, en este caso en torno a un eje que pasa por A

\vec{v}^O_{10}=\vec{\omega}_{10}\times\overrightarrow{AO}=(-\omega\vec{\jmath})\times(-L\vec{\imath})=-L\omega\vec{k}

Sumando las dos contribuciones


4 Eje instantáneo de rotación

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace