Entrar Página Discusión Historial Go to the site toolbox

Triángulo en movimiento helicoidal

De Laplace

Contenido

1 Enunciado

El triángulo de vértices A, B y C, constituye un sólido rígido en movimiento respecto del sistema de referencia fijo OXYZ. De dicho movimiento se conocen los siguientes datos:

  • Los vértices A y B permanecen en todo instante sobre el eje OZ, desplazándose ambos con igual velocidad instantánea: \vec{v}^A =
\vec{v}^B = v(t) \vec{k}.
  • El vértice C se mueve describiendo la hélice Γ, que en el sistema OXYZ está descrita por las ecuaciones paramétricas siguientes (donde A y b son constantes conocidas):
\vec{r}(\theta)= A\cos\theta\vec{\imath}+A\,\mathrm{sen}\,\theta\vec{\jmath}+ \frac{b}{2\pi}\theta\vec{k}
  1. Indique de forma razonada cuál es el eje instantáneo de rotación y mínimo deslizamiento en el movimiento descrito. Determine el vector velocidad angular en términos de los datos expresados en el enunciado.
  2. Exprese la componente normal de la aceleración del vértice C en un instante cualquiera, en función de los datos del enunciado.
  3. Para el caso en que v(t) = v0 (cte.), y b = πA, calcule la aceleración del vértice C. Determine la ley horaria s = s(t) con que el punto C describe su trayectoria.

2 EIRMD

El eje instantáneo de rotación y mínimo deslizamiento se caracteriza porque en cada uno de sus puntos

\vec{v}^I \parallel \vec{\omega}

Por otro lado, tenemos que, dados dos puntos cualesquiera del sólido

\vec{v}^B = \vec{v}^A + \vec{\omega}\times\overrightarrow{AB}

En este caso en concreto tenemos que las velocidades de A y B son iguales por lo que

\vec{v}^A = \vec{v}^B \qquad\Rightarrow\qquad \vec{\omega}\times\overrightarrow{AB}=\vec{0}

Esto quiere decir que \vec{\omega} es paralelo a \overrightarrow{AB} y por tanto

\vec{\omega}=\omega\vec{k}

Pero esta misma dirección es la de las velocidades de A y B

\vec{v}^A = \vec{v}^B = v(t)\vec{k}\parallel \vec{\omega}=\omega \vec{k}

Por tanto el EIRMD no es otro que el el eje que pasa por A y B: el eje Z.

La velocidad de deslizamiento, común a todos los puntos del sólido, será igual a la de A o B

vd = vA = v(t)

3 Aceleración normal

La aceleración normal de C es igual a

\vec{a}^C_n = \frac{(v^C)^2}{R_c}\vec{N}

siendo Rc el radio de curvatura de la trayectoria.

De la velocidad de C necesitamos la celeridad, pero solo conocemos la componente vertical que es igual a la velocidad de deslizamiento

v^C_z = v_d = v(t)\,

Relacionamos ambas cosas observando que

\vec{v}= v\vec{T}

siendo el vector tangente a una hélice

\vec{T}=\frac{\mathrm{d}\vec{r}/\mathrm{d}\theta}{\left|\mathrm{d}\vec{r}/\mathrm{d}\theta\right|}

A partir de las ecuaciones paramétricas de la hélice se obtiene el vector tangente

No se pudo entender (Falta el ejecutable de <strong>texvc</strong>. Por favor, lea <em>math/README</em> para configurarlo.): \vec{T}=-\frac{2\pi A}{\sqrt{(2\pi A)^2+b^2}}\mathrm{sen}{(\theta)\vec{\imath}+\frac{2\pi A}{\sqrt{(2\pi A)^2+b^2}}\cos\theta\vec{\jmath}+\frac{b}{\sqrt{(2\pi A)^2+b^2}}\vec{k}

Por tanto la componente vertical de la velocidad de C es

v^C_z = v^CT_z = \frac{bv^C}{\sqrt{(2\pi A)^2+b^2}}

y de aquí obtenemos la celeridad de C

v^C = \frac{\sqrt{h^2+R^2}}{h}v(t)

El radio de curvatura de una hélice no es, como pudiera pensarse, igual a R, el radio del cilindro sobre el que se encuentra. Para calcularlo se emplea la fórmula general

R_c = \frac{\left|\vec{r}'\right|^3}{\left|\vec{r}'\times\vec{r}''\right|}        \vec{r}'\equiv \frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}        \vec{r}''\equiv \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}\theta^2}

En este caso resulta

R_c= \frac{h^2+R^2}{R}

Reuniendo ambos resultados obtenemos el módulo de la aceleración normal de C

a^C_n = \frac{(h^2+R^2)v^2/h^2}{(h^2+R^2)/R}=\frac{v^2R}{h^2}

Si deseamos esta aceleración normal en forma vectorial, debemos calcular el vector normal a la trayectoria que, en forma general, es

\vec{N}=-\frac{\vec{r}'\times(\vec{r}'\times\vec{r}'')}{\left|\vec{r}'\right|\left|\vec{r}'\times\vec{r}''\right|}

En este caso, este cálculo nos da

\vec{N}=-\cos\theta\vec{\imath}-\,\mathrm{sen}\,\theta\vec{\jmath}

por lo que la aceleración normal es

\vec{a}^C_n = -\frac{v^2R}{h^2}\left(\cos\theta\vec{\imath}+\,\mathrm{sen}\,\theta\vec{\jmath}\right)

4 Aceleración y ley horaria

4.1 Aceleración

Si v(t) = v0 la celeridad del punto C es

v^C = \frac{\sqrt{h^2+R^2}}{h}v_0=\mathrm{cte}

Si la celeridad es constante, el movimiento de C es uniforme y su aceleración tangencial nula

\vec{a}^C_t = \frac{\mathrm{d}v^C}{\mathrm{d}t}\vec{T}=\vec{0}

y por tanto toda la aceleración es normal, siendo su valor el que ya conocemos

\vec{a}^C = \vec{a}^C_n = -\frac{v^2R}{h^2}\left(\cos\theta\vec{\imath}+\,\mathrm{sen}\,\theta\vec{\jmath}\right)

4.2 Ley horaria

La ley horaria es inmediata, puesto que la celeridad es constante

\frac{\mathrm{d}s}{\mathrm{d}t}=v^C = \frac{\sqrt{h^2+R^2}}{h}v_0   \Rightarrow   s=s_0+\frac{\sqrt{h^2+R^2}}{h}v_0 t

También podemos dar, como ley horaria la variación del parámetro θ con el tiempo. Para ello observamos que

\vec{v}^C=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}^C}{\mathrm{d}\theta}\frac{\mathrm{d}\theta}{\mathrm{d}t}=
\left(-R\,\mathrm{sen}\,\theta\vec{\imath}+R\cos\theta\vec{\jmath}+h\vec{k}\right)\dot{\theta}

Si igualamos la componente z a la velocidad de deslizamiento

h\dot{\theta}=v_0\qquad\Rightarrow\qquad \theta=\theta_0+\frac{v_0}{h}t

cumpliéndose la relación

s = \sqrt{h^2+R^2}\theta

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace